
A Radar Simulation Program for a 1024-Processor Hypercube*

John L. Gustafson, Robert E. Benner, Mark P. Sears, and Thomas D. Sullivan
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.

Abstract. We have developed a fast parallel version of an
existing synthetic aperture radar (SAR) simulation program,
SRIM. On a 1024-processor NCUBE hypercube, it runs an order
of magnitude faster than on a CRAY X-MP or CRAY Y-MP
processor. This speed advantage is coupled with an order of
magnitude advantage in machine acquisition cost. SRIM is a
somewhat large (30,000 lines of Fortran 77) program designed
for uniprocessors; its restructuring for a hypercube provides new
lessons in the task of altering older serial programs to run well
on modern parallel architectures. We describe the techniques
used for parallelization, and the performance obtained. Several
novel approaches to problems of task distribution, data
distribution, and direct output were required. These techniques
increase performance and appear to have general applicability
for massive parallelism. We describe the hierarchy necessary to
dynamically manage (i.e., load balance) a large ensemble. The
ensemble is used in a heterogeneous manner, with different
programs on different parts of the hypercube. The heterogeneous
approach takes advantage of the independent instruction streams
possible on MIMD machines.

Keywords. Algorithms, hypercubes, load balancing, parallel
processing, program conversion, radar simulation, ray tracing,
SAR.

*This work was performed at Sandia National Laboratories,
operated for the U. S. Department of Energy under contract
number DE-AC04-76DP00789, and was partially supported by
the Applied Mathematical Sciences Program of the U. S.
Department of Energy's Office of Energy Research.

1. INTRODUCTION

We are developing parallel methods, algorithms, and
applications for massively parallel computers. This includes the
development of production-quality software, such as the radar
simulation program SRIM, for execution on massively parallel
systems. Here, massive parallelism refers to general-purpose
Multiple-Instruction, Multiple-Data (MIMD) systems with more
than 1000 autonomous floating-point processors (such as the
NCUBE/ten used in this study) in contrast to Single-Instruction,
Multiple-Data (SIMD) systems of one-bit processors, such as the
Goodyear MPP or Connection Machine.

Previous work at Sandia has shown that regular PDE-type
problems can achieve near-perfect speedup on 1024 processors,
even when all I/O is taken into account. The work described in
[9] made use of static load balancing, regular problem domains,
and replication of the executable program on every node. This is
the canonical use [8] of a hypercube multicomputer [6, 10, 11,
17], and we observed speeds 1.6 to 4 times that of a conventional
vector supercomputer on our 1024-processor ensemble.

We now extend our efforts to problems with dynamic load
balancing requirements, global data sets, and third-party
application programs too large and complex to replicate on every
processor. The performance advantage of the ensemble over
conventional supercomputers appears to increase with the size
and irregularity of the program; this observation is in agreement
with other studies [7]. On a radar simulation program, SRIM, we
are currently reaching speeds 7.9 times that of the CRAY X-MP
(8.5 nsec clock cycle, using the SSD, single processor) and 6.8
times that of the CRAY Y-MP. This advantage results primarily
from the non-vector nature of the application and the relative
high speed of the NCUBE on scalar memory references and
branching. Since either CRAY is 12–20 times more expensive
than the NCUBE/ten, we can estimate that our parallel version is
at least 15 to 25 times more cost-effective than a CRAY version
using all four or eight of its processors.

The SRIM application is one of importance to Sandia’s
mission. It permits a user to preview the appearance of an object
detected with synthetic aperture radar (SAR), by varying
properties of the view (azimuth, elevation, ray firing resolution)
and of the radar (wavelength, transfer function, polarization,
clutter levels, system noise levels, output sampling). SRIM is
based on ray-tracing and SAR modeling principles, some of
which are similar to those used in optical scene generation.
Hundreds of hours are consumed on supercomputers each year
by the SRIM application.

Successful restructuring of SRIM required that parallel
application development draw upon new and ongoing research in
four major areas:

• heterogeneous programming
• program decomposition
• dynamic, asynchronous load balancing
• parallel graphics and other input/output

These four areas are the focus of this paper. The resulting
performance of parallel SRIM represents major performance and
cost advantages of the massively parallel approach over
conventional vector supercomputers on a real application.

In § 2, we examine background issues. These include the
traditional approach to ray tracing, characteristics of the third-
party simulation package, SRIM [1], salient features of our
1024-processor ensemble, and how those features fit the task of
radar simulation. We then explain in § 3 the strategy for
decomposing the program—both spatially and temporally—with
particular attention to distributed memory and control. The
performance is then given in § 4, and compared to that of
representative minicomputers and vector supercomputers.

2. BACKGROUND DISCUSSION

2.1 TRADITIONAL RAY TRACING AND PARALLELISM

The ray-tracing technique has its origin at the Mathematical
Applications Group, Inc. (MAGI) in the mid-1960s [12, 13]. Ray
tracing was first regarded as a realistic but intractable method of
rendering images, since the computations could take hours to
days per scene using the computers of that era. As computers
became faster, use of the ray tracing technique increased.

In optical ray tracing, a light source and a set of objects are
stored as geometrical descriptions. Rays from the viewer are
generated on a grid or randomly. The rays are tested for
intersection against the entire set of objects as shown
schematically in Figure 1. A “bounce” is recorded for each ray
that experiences at least one intersection. That is, the first
intersection is found by sorting and treated as a generator of
another ray. The set of records associated with these ray bounces
is known as the ray history. The process repeats until the ray
leaves the scene or the number of bounces exceeds a
predetermined threshold. The effect (line-of-sight returns) of the
original ray on the viewer can then be established.

Figure 1. Traditional Ray Tracing (Optical)

The ray firing events are operationally independent, so the
problem appears to decompose so completely that no
interprocessor communication is necessary. It is a common
fallacy that putting such an application on a parallel processor is
a trivial undertaking. Although the rays are independent, the
object descriptions are not. Also, the work needed for each ray is
uneven and the resulting work imbalance cannot be predicted
without actually performing the computation.

Therefore, some form of dynamic, asynchronous load
balancing is needed to use multiple processors efficiently. A
common approach, inadequate for our 1024-processor ensemble,
is the master-slave model, with the host delegating tasks from a
queue to processors that report in as idle. Figure 2 illustrates this
scheme. On a hypercube, a logarithmic-height spanning tree
provides the required star-shaped topology. This is handled by
the hypercube operating system and need not be visible to the
programmer.

Figure 2. Master-Slave Load Balancer on a Hypercube

Simple master-slave schemes do not scale with the number
of slave processors. Suppose, as in our hypercube, that the host
uses at least two milliseconds to receive even the shortest
message from a node. If all 1024 nodes send just a two-byte
message indicating their work status to the host, the host must
spend a total of two seconds just receiving all the messages. If
the average node task takes less than 2 sec, the host will be
overwhelmed by its management responsibilities and the nodes
will often be in an idle state waiting for the host for new
assignments. A much better method is described in § 3.3 below.

An entirely different approach is to divide space rather than
the set of fired rays, which potentially removes the need for
every processor to be able to access the entire object database.
This approach creates severe load imbalance near the light
sources and high interprocessor communication cost; see [15].

2.2 PROBLEM SCALING

The algorithmic cost of a ray-tracing algorithm depends
primarily on:

• The number of rays fired
• The maximum allowed number of bounces
• The number of objects in the scene

The increase in computational effort and the amount of ray
history data is approximately linear in the number of rays fired.
However, memory requirements are unaffected by the number of
rays, because ray history data resides in either an SSD scratch
file on the CRAY or interprocessor messages on the hypercube.

The maximum allowed number of bounces b can affect
computational effort, since every bounce requires testing for
intersection with every object in the scene. In some optical ray
tracing models, rays can split as the result of
reflections/refractions, causing work to increase geometrically
with maximum bounces. Here, we increase work only
arithmetically. As with the number of rays fired, varying b has
little effect on storage requirements. Therefore, it is possible, in
principle, to compare elapsed times on one processor and a
thousand processors for a fixed-size problem [9], since scaling
the problem does not result in additional storage. These scaling
properties contrast with those of the applications presented in
[9], in which increasing ensemble size leads naturally to an
increase in the number of degrees of freedom in the problem.

2.3 THE SRIM RADAR SIMULATOR

The SRIM program has about 30,000 lines (about 150
subroutines) of Fortran 77 source text. The two most time-
consuming phases are GIFT (18,000 lines), and RADSIM
(12,000 lines). GIFT reads in files from disk describing the
scene geometry, and viewpoint information from the user via a
console, and then computes “ray histories,” the geometrical
paths traced by each ray fired from the emanation plane. It has
its roots in the original MAGI program [4], and uses
combinatorial solid geometry to represent objects as Boolean
operations on various geometric solids. In contrast to many other
ray tracing programs that have been demonstrated on parallel
machines, GIFT supports many primitive geometrical element
types:

Box 4 to 8 Vertex Polyhedron
Sphere Elliptic Hyperboloid
General Ellipsoid Hyperbolic Cylinder
Truncated General Cone Right Circular Cylinder
Truncated Elliptical Cone Rectangular Parallelepiped
Half-Space Right Elliptic Cylinder
Truncated Right Cone Arbitrary Polyhedron
Circular Torus Parabolic Cylinder
Elliptical Paraboloid Right-Angle Wedge
Arbitrary Wedge Elliptical Torus

This large number of object types is a major reason for the large
size of the serial GIFT executable program.

To reduce the need to compare rays with every object in the
database, GIFT makes use of nested bounding boxes that greatly
reduce the computational complexity of the search for
intersections. For the price of additional objects in the database,
the cost of the comparison is reducible from linear to logarithmic
complexity in the number of objects.

A subset of GIFT converts a text file describing the
geometries to a binary file that is then faster to process.
However, it is common to convert a text file to binary once for
every several hundred simulated images, much as one might
compile a program once for every several hundred production
runs. Therefore, we have not included the conversion routine in
either the parallelization effort (§ 3) or performance
measurement (§ 4).

The ray histories generated by serial GIFT are also stored
on disk (SSD on the CRAY version). RADSIM, a separately
loaded program, then uses this ray history file to simulate the
effect on a viewing plane of radar following those paths (see
Figure 3.) By separating the simulation into these two parts, the
user can experiment with different radar properties without
recomputing the paths taken by the rays.

Figure 3. Serial SRIM Flowchart

Unlike optical ray tracing, every object intersection visible
from the viewing plane contributes to the image, and the
contributions add as complex numbers instead of simply as real

intensities. That is, interference between waves is a significant
effect. Also unlike optical ray tracing, the ray-traced image must
be convolved with the original radar signal (usually by FFT
methods). Another difference from optical ray tracing is that
dozens of bounces might be needed to obtain an accurate image.
While optical ray tracing algorithms might reduce computation
by setting a maximum of three to ten bounces, synthetic aperture
radar often undergoes over 30 bounces without significant
attenuation.

Perhaps the most important qualitative difference between
SAR and optical imagery is that the x-axis does not represent
viewing azimuth in SAR images. Instead, it represents the length
of the path from the radar source to the target. Thus, the SAR
image may bear little resemblance to the optical image. This is
one reason users of SAR (as well as systems for automatic target
recognition) must be trained to recognize objects; they cannot
rely on simple correspondence with the optical appearance of
targets. As a result, large databases of SAR images are needed
for every object of interest, which poses a daunting
computational task.

The RADSIM approach is described in [1]. Other methods
for predicting radar signatures are described in [5]. The so-called
dipole approximation method, or method of moments, takes into
account the fact that conductors struck by electromagnetic
radiation become radiation sources themselves, creating a large
set of fully-coupled equations. Radiosity methods [3] for
predicting optical images also lead to fully coupled equations.
Although the dipole and radiosity methods are in principle more
accurate than ray tracing, the cost of solving the resulting dense
matrix restricts the method of moments to relatively coarse
descriptions of scenes and objects.

2.3 THE 1024-PROCESSOR ENSEMBLE AND SRIM
ISSUES

The NCUBE/ten is the largest Multiple-Instruction
Multiple-Data (MIMD) machine currently available
commercially. The use of processors specifically designed as
hypercube nodes allows ensembles of up to 1024 processors to
fit in a single cabinet. Each node consists of the processor chip
and six 1-Mbit memory chips (512 Kbytes plus error correction
code) [14]. Each processor chip contains a complete processor,
11 bidirectional communications channels, and an error-
correcting memory interface. The processor architecture
resembles that of a VAX-11/780 with floating-point accelerator,
and can independently run a complete problem of practical size.
Both 32-bit and 64-bit IEEE floating-point arithmetic are
integral to the chip and to the instruction set; currently, SRIM
primarily requires 32-bit arithmetic.

Since there is no vector hardware in the NCUBE, there is no
penalty for irregular, scalar computations. This is appropriate for
the SRIM application, since vector operations play only a minor
role in its present set of algorithms. Also, much of the time in

SRIM is spent doing scalar memory references and testing for
the intersection of lines with quadratic surfaces, which involves
scalar branch, square root, and divide operations. Since each
NCUBE processor takes only 0.27 microsecond for a scalar
memory reference, 1 microsecond for a branch, and 5
microseconds for a square root or divide, the composite
throughput of the ensemble on those operations is 50 to 550
times that of a single CRAY X-MP processor (8.5 nanosecond
clock).

All memory is distributed in our present hypercube
environment. Information is shared between processors by
explicit communications across channels (as opposed to the
shared memory approach of storing data in a common memory).
This is both the greatest strength and the greatest weakness of
ensemble computers: The multiple independent paths to memory
provide very high bandwidth at low cost, but global data
structures must either be duplicated on every node or explicitly
distributed and managed.

Specifically, there is no way a single geometry description
can be placed where it can be transparently accessed by every
processor. Each processor has 512 Kbytes of memory, of which
about 465 Kbytes is available to the user. However, 465 Kbytes
is not sufficient for both the GIFT executable program (110
Kbytes) and its database, for the most complicated models of
interest to our simulation efforts. It is also insufficient to hold
both the RADSIM executable program (51 Kbytes) and a high-
resolution output image. (The memory restrictions will be eased
considerably on the next generation of hypercube hardware.) Our
current parallel implementation supports a database of about
1100 primitive solids and radar images of 200 by 200 pixels
(each pixel created by an 8-byte complex number). Two areas of
current research are distribution of the object database and the
radar image, which would remove the above limitations at the
cost of more interprocessor communication.

The hypercube provides adequate external bandwidth to
avoid I/O bottlenecks on the S R I M application (up to 9
Mbytes/sec per I/O device, including software cost [2]). It is also
worthy of note that for the 1024-processor ensemble, the lower
512 processors communicate to the higher 512 processors with a
composite bandwidth of over 500 Mbytes/sec. This means that
we can divide the program into two parts, each running on half
the ensemble, and have fast internal communication from one
part to the other.

The host may dispense various programs to different subsets
of the ensemble, decomposing the job into parts much like the
data is decomposed into subdomains. Duplication of the entire
program on every node, like duplication of data structures on
every node, is an impractical luxury when the program and data
consume many megabytes of storage. This use of heterogeneous
programming reduces program memory requirements and
eliminates scratch file I/O (§ 3.1). With respect to program
memory, heterogeneous programming is to parallel ensembles

what overlay capability is to serial processors; heterogeneous
programming is spatial, whereas overlays are temporal.

One more aspect of the system that is exploited is the
scalability of distributed memory computers, which makes
possible personal, four-processor versions of the hypercube
hosted by a PC-AT compatible. We strive to maintain scalability
because the performance of personal systems on SRIM is
sufficient for low-resolution studies and geometry file setup and
validation. Also, since both host and node are binary compatible
with their counterparts in the 1024-processor system, much of
the purely mechanical effort of program conversion was done on
personal systems.

3. PARALLELIZATION STRATEGY

To date we have used four general techniques to make
SRIM efficient on a parallel ensemble: heterogeneous ensemble
use (reducing disk I/O), program decomposition (reducing
program storage), hierarchical task assignment (balancing
workloads), and parallel graphics (reducing output time).

3.1 HETEROGENEOUS ENSEMBLE USE

As remarked above, traced rays are independent in optical
ray tracing. In the SRIM radar simulator, the task of tracing any
one ray is broken further into the tasks of computing the ray
history (GIFT) and computing the effect of that ray on the image
(RADSIM). In optical ray tracing, the latter task is simple, but in
radar simulation it can be as compute-intensive as the former.

The serial version completes all ray histories before it
begins to compute the effect of the rays on the image. We extend
the parallelism within these tasks by pipelining them (Figure 4);
results from nodes running GIFT are fed directly to the nodes
simultaneously running RADSIM, with buffering to reduce the
number of messages and hence communication startup time. We
divide the parallel ensemble in half to approximately balance the
load between program parts; depending on the maximum
number of bounces and the number of objects, processing times
for GIFT are within a factor of two of processing times for
RADSIM . Why is this heterogeneous approach better than
running GIFT on all nodes, then RADSIM on all nodes,
keeping the cube homogeneous in function?

First, it eliminates generation of the ray history file, thereby
reducing time for external I/O. Although the ray history file in
principle allows experiments with different radar types, practical
experience shows that it is always treated as a scratch file. The
human interaction, or the preparation of databases of views of an
object, invariably involves modifications to the viewing angle or
object geometry instead of just the radar properties. Hence, only
unused functionality is lost, and we avoid both the time and the
storage needs associated with large (~200 Mbyte) temporary
disk files. (Applying this technique to the CRAY would have
only a small effect, since scratch file I/O on the SSD takes only
3% of the total elapsed time.)

Figure 4. Parallel SRIM Flowchart

Secondly, it doubles the grain size per processor. By using
half the ensemble in each phase, each node has twice as many
tasks to do. This approximately halves the percent of time spent
in parallel overhead (e.g. graphics, disk I/O) in each program
part. Furthermore, by having both program parts in the computer
simultaneously, we eliminate the serial cost of reloading each
program part.

3.2. PROGRAM DECOMPOSITION

As shown in Figure 3 above, the original serial version of
SRIM exists in two load modules that each divide into two parts.
Since every additional byte of executable program is one less
byte for geometric descriptions, we divide SRIM into phases to
minimize the size of the program parts. Some of these phases are
concurrent (pipelined), while others remain sequential.

First, we place I/O management functions, including all user
interaction, on the host. Most of these functions, except error
reporting, occur in the topmost levels of the call trees of both
GIFT and RADSIM . They include all queries to the user
regarding what geometry file to use, the viewing angle, whether
to trace the ground plane, etc., as well as opening, reading,
writing, and closing of disk files. Much of the program (83500
bytes of executable program) was eventually moved to the host,
leaving the computationally intensive routines on the much
faster hypercube nodes, and freeing up their memory space for
more detailed geometry description. Both GIFT and RADSIM
host drivers were combined into a single program. This was the
most time-consuming part of the conversion of SRIM to run in
parallel. To illustrate the host-node program decomposition,
Figure 5 shows the original call tree for RADSIM. (The call tree
for GIFT is too large to show here.

Figure 5. Call Tree for Radar Image Generation

The parts of the program run on the host are shown in the
shaded region in Figure 5. The others run on each RADSIM
hypercube node. The dashed lines show messages between
hypercube nodes and the host program. One such path is the
communication of the computed radar image from RADSIM to
subroutine USER on the host. The other is the P R O C E S
subroutine, which has been divided into host and node routines
that communicate program input by messages. Routines
RDHEAD and EMANAT in the host portion are also needed by
the node; these were replicated in the node program to eliminate
the calling tree connection. The GIFT program contained many
subroutines that had to be replicated on both host and node in a
rather arduous process of separating host and node functionality.

Error reporting can happen at any level in the program, a
common practice in Fortran. To remove the need for
computationally-intensive subroutines to communicate with the
user, errors are reported by sending an error number with a
special message type to the host, which waits for such messages
after execution of the GIFT and RADSIM programs begins.

Next, the conversion of text to binary geometry files was
broken into a separate program from GIFT. We use only the
host to create the binary geometry file. The conversion program,
CVT, uses many subroutines of GIFT, so this decomposition
only reduces the size of the executable GIFT program from 131
Kbytes to 110 Kbytes.

Similarly, the convolution routines in RADSIM are treated
separately. Much of the user interaction involves unconvolved
images and, unlike the ray history file, the unconvolved image

files are both relatively small and repeatedly used thereafter.
This reduces the size of the RADSIM executable program,
allowing more space for the final image data in each node
running RADSIM.

One option in SRIM is to produce an optical image instead
of a radar image. Since this option is mainly for previewing the
object, ray tracing is restricted to one bounce for greater speed.
Although optical and the radar processing are similar and use
many of the same routines, only the executable program
associated with one option needs to be loaded into processors.
The user sets the desired option via host queries before the
hypercube is loaded, so breaking the program into separate
versions for optical and radar processing further reduces the size
of the node executable program.

Finally, we wish to display the radar images quickly on a
graphics monitor. This means writing a program for the I/O
processors on the NCUBE RT Graphics System [14]. These I/O
processors are identical to the hypercube processors except they
have only 128 Kbytes of local memory. Although library
routines for moving images to the graphics monitor are
available, we find that we get a 10- to 30-fold increase in
performance [2] by crafting our own using specific information
about the parallel graphics hardware.

 Figure 6 summarizes the division of the hypercube into
subsets performing different functions. There are currently eight
different functions in our parallel version of SRIM:

• Host program
• Host I/O node program (the VORTEX operating

system; no user program)
• Manager node program (currently part of GIFT)
• GIFT node program
• Image node program (currently part of RADSIM)
• RADSIM node program
• Graphics node program
• Graphics controller program (loaded by user, supplied

by the vendor)

We have not fully optimized the layout shown in Figure 6.
For example, it may be advantageous to reverse the mapping of
the GIFT Manager program and RADSIM Image program to
the nodes, to place the RADSIM nodes one communication step
closer [2, 15] to the graphics nodes. Also, a significant
performance increase (as much as 15%) should be possible by
driving disk I/O through the parallel disk system instead of the
host disk, in the same manner that graphics data is now handled
by the parallel graphics system. Successful use of parallel disk
I/O requires that we complete software which renders the
parallel disk system transparent to the casual user, so that
portability is maintained between the 1024-processor system and
the four-processor development systems.

Figure 6. Multiple Functions of Hypercube Subsets on Parallel SRIM

We have extended system software to facilitate fast loading
of the GIFT-RADSIM pair of cooperating node executable
programs into subcubes of an allocated subcube. This fast
loading software can be used for any application requiring
multiple programs on the hypercube. If operating system support
for this software is improved, one could load an arbitrary number
of programs into an allocated hypercube in logarithmic time [9].
Separate MANAGER and IMAGE programs could be created,
in addition to possible additional functions, such as a separate
CLUTTR program (see Figure 5) to handle the clutter-fill
function embedded in RADSIM.

The most fundamental (and unresolved) research issue in
parallel load balance is posed by the allocation of processors to
GIFT and RADSIM. For example, one may assign twice as
many processors to GIFT as to RADSIM, to achieve high
parallel efficiency on all processors. Two factors must be
considered here: (1) the routing of ray history information
between sets of nodes so as to maintain load balance, and (2) the
dynamics of the GIFT-RADSIM load balance; that is, a truly
dynamic balance would require one to switch executable
programs on some processors during the course of a simulation.

3.3 HIERARCHICAL TASK ASSIGNMENT

Conventional master-slave dynamic load balancing has a
bottleneck at the host for large ensembles (§ 2). To relieve the
host of the burden of managing the workloads of the hypercube
nodes, we instead use a subset of the hypercube itself as
managers (Figure 7). The host statically assigns a task queue to
each manager. Each manager then delegates tasks from its queue
to workers that report in as idle, as in the master-slave model of
§ 2.1. If the host-manager task queue allocation were dynamic,
this would be a two-tier master-slave system. One can envision
the need for even more management layers as the number of
processors increases beyond 1024.

Figure 7. Manager-GIFT Load Balancer

Table 1 shows SRIM performance in elapsed time as a
function of the number of manager nodes. Two geometry models
("slicy," shown in Figure 1, and an M60 tank) and two program

options (rad (radar) and ovr (optical view in slant plane)) were
used. Managers assigned 4-by-4 blocks of rays in all cases.
Firing ray patterns ranged from 187 by 275 to 740 by 1100.

Table 1
Performance for Various Manager Node Allocations on 1024
Processors. Entries are Elapsed Time in Seconds. Work units are 4 by 4
ray groups for dynamic assignment, ray columns for static (no manager)
assignment. Bolded entries show the optimum range for each case.

slicy m60
Manager
Nodes

Worker-
Manager

Ratio

ovr
474 by

639

rad
945 by
1275

ovr
187 by

275

rad
740 by
1100

0 — 27 82 42 172
1
2
4
8
16
32
64
128
256

511:1
255:1
127:1
63:1
31:1
15:1
7:1
3:1
1:1

99
41
27
23
23
24
25
25
26

301
77
72
72
72
75
77
89

120

35
32
32
31
32
31
32
33
34

181
134
129
131
131
132
139
160
242

To determine the best ratio of worker nodes to manager
nodes, we experimented with 1 to 256 managers. Table 1 shows,
across a range of data sets and various viewing options, manager
nodes saturate in processing work requests for ratios greater than
127:1. Managers are relatively idle for ratios less than 15:1,
suggesting that some managers would be put to better use as
workers. The need for managers increases with model size (the
M60 is larger than "slicy") and image size. Four to 16 manager
nodes suffice in the parallel version of S R I M for the
representative model and image sizes presented here.

3.4 GRAPHICS OUTPUT

The RADSIM nodes each contain an array capable of
storing the entire final image, initially set to zero (blank). As ray
histories are processed, rays contribute to the image in a sparse
manner. By replicating the entire output screen on every
RADSIM node, we eliminate interprocessor communications
until all rays have been processed. Once all RADSIM nodes
have been sent messages indicating there are no more rays to
process, they participate in a global exchange process [9, 16] to
coalesce the independent sparse images into the final summed
image. This takes O (lg P) steps, where P is the number of
RADSIM processors. After the global exchange, each RADSIM
node has a subset of the computed radar signature, represented as
one complex pair of 32-bit real numbers per pixel. The
distributed image is then scaled to pixels for transmission in
parallel to an I/O channel of the hypercube.

We have found that high-speed graphics on our current
massively-parallel system required major effort [2]. The graphics
board organizes the 16-bit memory paths of its 16 I/O processors
into a single 256-bit path into the frame buffer. The 256 bits
represent a row of 32 pixels of eight bits each. The display is
tiled with these 32-pixel rows, which gives each I/O processor
responsibility for a set of columns on the display. Each column
created by RADSIM is routed to a GIFT node that is a nearest
neighbor of the I/O processor responsible for that column. The
GIFT node sends the data to the I/O processor, with software
handshaking to prevent overloading the I/O processor. The net
effect of this complicated scheme is the reliable gathering and
display of a complete simulated radar image in less than one
second. We have built a library of these graphics algorithms to
relieve other hypercube users from dealing with the system
complexity.

4. PERFORMANCE

The following performance data are based on a single
problem: the M60 tank composed of 1109 primitive solids, with
0.82 million rays fired and a 200 by 200 final image. This
problem is representative of current production calculations on
Sandia's CRAY X-MP. The problem is identical to m60.rad in
Table 1, except for finer-grained ray assignments by the dynamic
load balancer (2-by-2 blocks of rays, found to be optimal for this
problem).

Table 2 compares the performance of SRIM on various
machines: a representative minicomputer, traditional
supercomputers, and a massively parallel supercomputer. The
performance range is almost 300 to 1. The elapsed time for a
complete simulation is compared in each case, including all
input and output. The NCUBE/ten time includes four seconds for
real-time graphics, which is unavailable on the other systems.
Some objects of interest will require several times as much
elapsed time per image.

Table 2
Performance Summary for Various Machines.

Elapsed
Time,

seconds

Elapsed
Time,

normalized

Mflop/
s

VAX 11/780 + FPA†

CRAY X-MP††

CRAY Y-MP††

NCUBE/ten hypercube

35383
981
843
124

285
7.9
6.8
1.0

0.15
5.3
6.2

42
†VAX times are for dedicated runs with a large working set.
††CRAY times are CPU, due to unavailability of dedicated time.

Previous comparisons of applications on the NCUBE with
their serial CRAY X-MP production counterparts [9] had shown
the parallel ensemble to be 1.6 to 4 times the speed of the vector
supercomputer. Here we see the effect of irregularity in the
computation (memory references, branches; see § 2.4). It is

difficult to count operations for this application, but we can infer
them using a CRAY X-MP hardware monitor and estimate
Mflop/s.

This example shows the massively parallel hypercube to be
superior in absolute performance to the traditional serial
approach for the SRIM application. It is more difficult to assess
relative cost-efficiency because of the wide error margins in
computer prices, but we can assert that the CRAY computers are
15 to 25 times more expensive than the NCUBE on this
application. Using acquisition prices only, we estimate that the
NCUBE/ten costs $1.5 million, a CRAY X-MP/416 $18 million
(including SSD, 8.5 nanosecond clock cycle), and CRAY Y-MP
$30 million. If we generously assume that all of the processors in
either CRAY can be used independently with 100% efficiency,
then the cost performance of the NCUBE versus the
CRAY X–MP is

($18 M)/($1.5 M)×(7.9 speedup vs. a CRAY CPU)/(4 CPUs)
= 23.7 times

and the cost performance of the NCUBE versus the
CRAY Y–MP is

($30 M)/($1.5 M)×(6.8 speedup vs. a CRAY CPU)/(8 CPUs)
= 17 times

Such advantages have been predicted for parallel computers for
years [17]. To our knowledge, this is the first published result
demonstrating such a large cost-performance advantage on a
supercomputer application.

We now analyze the parallel performance. Traditional
analysis of parallel speedup involves varying the number of
processors. This type of analysis is simplistic in the case of
SRIM because we have at least six different sets of processors to
increase or decrease in number. We have already presented one
breakdown (Table 1) that shows the result of varying the number
of Manager nodes, but it is difficult and inappropriate to apply
such ingrained concepts as "serial component" and
"communication overhead" to this system of cooperating sets of
processors.

One approach to a performance-versus-processors
evaluation is to vary the number of GIFT-RADSIM pairs,
keeping all the other sets of processors and the set of rays fixed
in size. Table 3 shows times for 64 to 512 pairs, for both
unbalanced workloads (no managers) and balancing by a 63:1
ratio of managers (taken from the set running GIFT) to GIFT-
RADSIM pairs. We note that the "best serial algorithm" to
which we compare performance is itself somewhat parallel, since
it requires the host, a host I/O node, a GIFT node, a RADSIM
node, and the graphics system (composed of some 20
processors)! For this "skeleton crew" of processors, we have
measured an elapsed time of 42980 seconds. If we assume GIFT
is the limiting part of the computation, then Table 3 implies that
the full 1024-processor ensemble is being used with about 68%
efficiency. We note that the 68% efficiency achieved here on a

fixed-sized problem exceeds the efficiencies of 49% to 62%
presented in [9] for three application programs on 1024
processors. Finally, dynamic load balancing is not needed for
fewer than 64 GIFT-RADSIM pairs in this case.

Table 3
SRIM Elapsed Time, T, and Efficiency, E, versus GIFT-
RADSIM pairs

No Manager ManagersGIFT-
RADSIM
Processor

Pairs

T
(sec)

E
(%)

Number
of

Managers

T
(sec)

E
(%)

64
128
256
512

751
414
244
172

89
81
69
49

1
2
4
8

750
393
220
124

90
85
76
68

Lastly, we break down the time by task in Table 4. A total
of 19 seconds is needed to initialize the system and the
simulation, and 12 seconds is needed for output operations.

Table 4
Timing Breakdown by Task (Time in Seconds)

Host
Active

Nodes
Active

Elapsed
Time

Initialization Phase
(15% of elapsed time)
Read initial input, open cube
Load GIFT program
Load RADSIM program
Load geometry file
Read, load other GIFT Data
Read, load other RADSIM data
Initialize graphics

2
4
1
8

< 1
<1
—

—
—
1
8

< 1
< 1

4

2
4
1
8

< 1
< 1

4
Computation Phase
(75% of elapsed time)
Compute/use ray histories
Empty ray history pipeline
(RADSIM)
Global exchange/sum image

—

—
—

92

< 1
1

92

< 1
1

Output Phase
(10% of elapsed time)
Display image
Save image on disk
Close cube

—
12

< 1

< 1
12
—

< 1
12

< 1
Totals: 27 118 124

The results of Table 4 pinpoint two areas for further
improvement in the parallel SRIM application. First, we expect
to reduce the 12 seconds of disk output and the 8 seconds for
loading the geometry file to at most 3 seconds total through use
of the parallel disk system. Second, we have measured one
second (out of 92) of residual load imbalance within the GIFT

processors, which could be addressed by a dynamic allocation of
task queues to managers by the host. Therefore, the total elapsed
time could be reduced to 106 seconds using the current
hardware. This would be 9.3 times faster than the CRAY X-MP,
8 times faster than the CRAY Y-MP, and would represent a
parallel efficiency of 79% relative to the tow-processor version.
Further improvements are possible when the GIFT-RADSIM
load imbalance is measured and addressed. To further define the
performance and cost-performance advantages using the latest
hardware for both vector and massively-parallel supercomputers,
we plan to compare the CRAY Y-MP results with results
obtained on the new NCUBE 2 as soon as the latter is available.

5. SUMMARY

We believe the parallelization of SRIM is the first such
effort to use heterogeneous programming, program
decomposition, dynamic load balancing, and parallel graphics in
concert. The work has pointed to further research opportunities
in areas such as parallel disk I/O and decomposition of object
databases and images. Furthermore, the parallel performance of
SRIM represents a major advantage of the massively parallel
approach over conventional vector supercomputers on a real
application: 6.8 times a CRAY Y-MP processor and 7.9 times a
CRAY X-MP processor in speed, coupled with a factor of 12 to
20 times the vector supercomputer in machine acquisition cost.

ACKNOWLEDGMENTS

We thank Gary Montry for suggestions regarding parallel
random number generation (cf. [8]) and heterogeneous program
loading, Jim Tomkins for CRAY timings, Guylaine Pollock and
Jim Tomkins for operation count estimates, and Gil Weigand for
optimizing the load balancing parameters to increase
performance. In addition, we thank Gerald Grafe and Ed Barsis
for critical reviews of the paper.

REFERENCES

[1] C. L. ARNOLD JR., "SRIM User's Manual," Environmental
Research Institute of Michigan, Ann Arbor, Michigan (Sept.
1987).

[2] R. E. BENNER, "Parallel Graphics Algorithms on a 1024-
Processor Hypercube," Proceedings of the Fourth
Conference on Hypercube Concurrent Computers and
Applications, to appear (Mar. 1989)

[3] C. M. GORAL, K. E. TORRANCE, AND D.
GREENBERG, "Modeling the Interaction of Light Between
Diffuse Surfaces," Computer Graphics, 18 (3), ACM
SIGGRAPH (1984), pp. 213–222.

[4] P. C. DYKSTRA, “The BRL-CAD Package: An Overview,”
Proceedings of the BRL-CAD Symposium ’88 (Jun 1988).

[5] P. C. DYKSTRA, “Future Directions in Predictive Radar
Signatures,” Proceedings of the BRL-CAD Symposium ’88
(Jun 1988).

[6] G. C. FOX, ed., Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, ACM
Press, New York (Jan 1988).

[7] G. C. FOX, "1989—The Year of the Parallel
Supercomputer," Proceedings of the Fourth Conference on
Hypercube Concurrent Processors, Vol. I, Prentice Hall,
Englewood Cliffs, New Jersey (1988).

[8] G. C. FOX, M. A. JOHNSON, G. A. LYZENGA, S. W.
OTTO, J. K. SALMON, AND D. W. WALKER, Solving
Problems on Concurrent Processors, Vol. I, Prentice Hall,
Englewood Cliffs, New Jersey (1988).

[9] J.L. GUSTAFSON, G. R. MONTRY, AND R. E. BENNER,
“Development of Parallel Methods for a 1024-Processor
Hypercube,” SIAM Journal of Scientific and Statistical
Computing, 9 (1988), pp. 609–638.

[10] M. T. HEATH, ed., Hypercube Multiprocessors 1986,
SIAM, Philadelphia, (1986).

[11] M. T. HEATH, ed., Hypercube Multiprocessors 1987,
SIAM, Philadelphia, (1987).

[12] MAGI, "A Geometric Description Technique Suitable for
Computer Analysis of Both Nuclear and Conventional
Vulnerability of Armored Military Vehicles," MAGI Report
6701, AD847576 (August 1967).

[13] M. J. MUUSS, “RT and REMRT—Shared Memory Parallel
and Network Distributed Ray-Tracing Program,” USENIX:
Proceeding of the Fourth Computer Graphics Workshop,
(Oct 1987).

[14 NCUBE, “ NCUBE Users Manual”, Version 2.1, NCUBE
Corporation, Beaverton, Oregon (1987).

[15] T. PRIOL AND K. BOUATOUCH, “Experimenting with a
Parallel Ray-Tracing Algorithm on a Hypercube Machine,”
Rapports de Recherche N˚ 405, INRIA-RENNES (May
1988).

[16] Y. SAAD AND M. H. SCHULTZ, “Data Communication in
Hypercubes,” Report YALEU/DCS/RR-428, Ya le
University, (1985).

[17] C. L. SEITZ, "The Cosmic Cube," Communications of the
ACM, 28 (1985) pp. 22–23.

