
Introducing Repli-
cated VLSI to
Supercomputing:
the FPS-164/MAX
Scientific Computer

Alan E. Charlesworth and John L. Gustafson
Floating Point Systems, Inc.

Offering
supercomputer
number-crunching
power and
overwhelming
price/performance
advantages,
replicated MOS VLSI
components prom-
ise to revolutionize
large-scale scientific
computing.

arge-scale scientific computing is
dominated by the “crunching of
numbers.” By performing billions of

multiplies and adds on millions of simu-
lated data points, scientists can model
physical phenomena, like the flow of air
around a supersonic airplane or the move-
ment of storms in the atmosphere. The data
values range over more than fifty orders of
magnitude, from the inside of a quark to
the circumference of the universe. Because
a simulation run is made up of thousands
of iterated computation steps, at least eight
significant digits must be retained by each
arithmetic operation to avoid excessive
round-off errors in the results.

The 16- and 32-bit integer arithmetic
common in business computing does not
provide adequate range or accuracy for
scientific use. Instead, scientific applica-
tions normally use 64-bit floating-point
arithmetic. IEEE standard double-precision
arithmetic,1 for example, provides a dy-
namic range of 616 orders of magnitude
and a precision of 15 significant digits.
Because arithmetic speed usually domi-
nates overall execution times, the perform-
ance of scientific computers is traditionally
measured in MFLOPS, or millions of
floating-point operations per second. Cur-
rent processor implementations range from
a speed of one twentieth MFLOP for the
best personal computer CPU to several
hundred MFLOPS per supercomputer
CPU.

VLSI parts for number
crunching

Unfortunately, the automatic scaling and
wide word widths of floating-point arith-
metic operations are quite complicated.2

For example, the implementation of a fast
32-bit integer adder requires approxi-
mately 1200 two-input gates, while a fast
64-bit floating point adder needs about
13,000 gates. Before the advent of VLSI
(over 10,000 gates per chip), it was very
expensive to implement this amount of
logic. The data unit (adder, multiplier,
registers, and interconnect buses) of the
11-MFLOP FPS-164 Scientific Computer,
designed in 1979 with medium-scale inte-
gration (10 to 100 gates per chip), required
nearly 2000 chips. It occupied seven large
(16- × 22-inch) printed circuit boards and
dissipated 760 watts of power (see Ta-
ble 1). This sizable amount of hardware
made it rare for a CPU to have more than
one set of floating-point arithmetic.

The business of implementing high-
speed scientific computing was forever
altered in mid-1984, when Weitek, Inc., of
Sunnyvale, California announced the first
commercial leap from MSI to VLSI for
fast 64-bit arithmetic.3 This advance re-
duced the size of a high-speed floating-
point data unit from several thousand chips
to nine chips. For the first time it was pos-
sible to greatly improve performance by
including many sets of arithmetic in a

L

Table 1. The impact of VLSI on number-crunching

Technology
Functional Unit 1979 MSI 1985 VLSI Improvement

Data unit (10–20 MFLOP arithmetic, registers, and 2450 sq. in. 39 sq. in 63x
interconnection buses 760 watts 18 watts 42x

Control unit (program and data memory address
generation) 700 sq. in. 6 sq. in. 116x

240 watts 4 watts 60x

Memory (250 ns cycle, 1 million 64-bit words) 5600 sq. iin. 350 sq. in. 16x
430 watts 40 watts 11x

Table 2. Announced MOS VLSI number-crunching parts as of mid-1985.

Function Part Max. Throughput Technology

Floating-point multiplier WTL 1264 8 MFLOPs 32 bits NMOS
4 MFLOPs 64 bits

 ADSP-3210 10 MFLOPs 32 bits CMOS
2.5 MFLOPs 64 bits

Floating-point ALU WTL 1265 8 MFLOPs 32 & 64 bits NMOS
ADSP-3220 10 MFLOPs 32 & 64 bits CMOS

Register reservation unit WTL 2068 8–12.5 MHz CMOS

Integer ALU Two ADSP-1201s 10 MHz CMOS
WTL 2067 8–12.5 MHz CMOS

Multiport register file WTL 1066 8 MHz NMOS

Memory address generator ADSP-1410 10 MHz CMOS

Program sequencer ADSP-1401 10 MHz CMOS
WTL 2069 8–12.5 MHz CMOS

256K static column DRAM I51C256H 15 MHz CMOS

Abbreviations: WTL=Weitek Corp.; ADSP=Analog Devices, Inc.; I=Intel Corp.

CPU. The FPS-164/MAX Scientific Com-
puter, initially delivered in April 1985, is
the first computer to be implemented from
replicated VLSI arithmetic parts—and the
first computer to provide several hundred
MFLOPs in a supermini-priced processor.

By mid-1985, two MOS VLSI number-
crunching chip sets had been publicly an-
nounced,4, 5 and several others were in de-
velopment. They provide a reasonably
complete selection of CPU functions (see
Table 2). By the time commercial
1.25–micron parts appear in late 1986, it is
reasonable to expect a two-chip CPU set
(data unit chip / control unit chip). With
this plethora of new VLSI parts, the op-
portunities for VLSI-based scientific com-
puting are almost unbounded. The fifty-
fold improvement attained so far by these
VLSI parts over their MSI equivalents
challenges today’s computer architect to
achieve one gigaflop in the same seven-
board space where only 10 MFLOPs fit in
1979.

Supercomputing with
replicated VLSI

MOS VLSI number-crunching compo-
nents have by far the lowest power dissi-
pation per MFLOP of any implementation
option and hence are the most cost-
effective way to implement high-speed
scientific computing. The speed of a single
MOS chip set is limited by internal gate
delays to around 20 MFLOPs. Von Neu-
mann computers (whether IBM PC or
Cray) do only one operation at a time and
hence can usefully employ only one set of
arithmetic hardware (VLSI or otherwise)
per CPU. Thus the performance of such a
CPU implemented with MOS VLSI parts
is limited to roughly 20 MFLOPs, which is
adequate for much useful work but not for
supercomputing. There are two options: to
build monolithic processors out of very
fast but very hot and expensive low-
integration components (such as emitter-
coupled logic or gallium arsenide) or to
build a parallel processing system out of
multiple MOS VLSI chip sets.

At 20 MFLOPs per CPU chip set, it
takes only a 50-processor system to reach a
total of one gigaflop. For such a system to
be useful, though, algorithms must have
enough potential concurrency to effec-
tively employ at least this many proces-
sors.

Fortunately, recent research at Caltech
suggests that many problems have suffi-
cient potential parallelism to utilize 10,000
to 100,000 concurrent computing nodes.6

The strategy is to divide the universe being
simulated into subdomains that are allo-
cated one per processing node. Each node
computes upon its particular volume and
communicates the relevant boundary in-
formation to its neighbors. Since volume
grows faster than surface area, the com-
munication rate required between nodes

can be traded off against the amount of
memory required per processing node by
increasing the computational volume han-
dled by each node. The division of the
problem space among the processors is
done explicitly by the applications de-
signer, and communication is accom-
plished via message-passing software cells.

As each new generation of improved
VLSI technology drives down the cost of
processors and memory, the expense of
communication (such as board wiring

Table 3. Hierarchy of multiprocessor connectivity

Number of
Communication Maximum Concurrent

Topology Ports/Node Data Transfers Example Applications

Bus 1 1 Time-sharing
Replacement

Broadcast bus 1 n Matrix
multiply-factoring

m-dimension mesh 2m 2nm Signal processing,
matrix arithmetic

Logarithmic
(hypercube) 2log2n 2n log2n FFT, circuit simulation
Crossbar 2n2 2n3 Shared memory

Note: n=number of processing nodes

space, cables, and connectors) can domi-
nate.7 This pitfall can be avoided by im-
plementing systems with only the mini-
mum amount of internodal communication
required to solve the dominant problem of
interest (see Table 3).

A bus interconnect has only a single
communications port per processing node
but can correspondingly accommodate
only a single transfer per unit time. This
bottleneck limits the degree of parallelism
to at most a few dozen nodes (see, for ex-
ample, the Encore system8). A broadcast
bus can send a single data item to all bus
destinations in a unit time. This is the
minimum amount of connectivity required
to perform matrix multiplication and fac-
toring with up to several hundred logically
parallel nodes; thus the broadcast bus is the
interconnect of choice for the
FPS–164/MAX matrix supercomputer.

In a mesh of nodes, each processor can
simultaneously send to or receive from its
nearest neighbors along each dimension of
the mesh at a cost of two communications
ports per dimension. The size of the mesh
can be extended indefinitely, but doing so
also indefinitely extends the distance be-
tween arbitrary nodes. Meshes are best for
algorithms where the data can flow locally,
stop by step across the system, as in a mac-
roscopic pipeline. The CMU Systolic Ar-
ray Computer9 is an example of a one-
dimensional mesh intended for signal and
image processing.

In a logarithmic interconnect, such as a
Boolean hypercube, the number of ports
per node grows with the logarithm of the
number of nodes. This means that the dis-

tance between arbitrary nodes also grows
only logarithmically, which is necessary
for problems with significant nonlocal
communication, such as the FFT. The
Caltech Cosmic Cube is a demonstration
six-dimensional hypercube using 0.05
MFLOP nodes based on the Intel
8086/8087.10 Intel has recently marketed a
version of this system called the Personal
SuperComputer (iPSC).11 Finally, in a
crossbar connection each node is con-
nected to every other. This scheme is fea-
sible only for systems using a small num-
ber of nodes, such as the 16-processor
C.mmp,12 and has been historically used to
implement multiport shared memories for
mainframe systems.

Matrix supercomputing
The problems of engineering and applied

physics can be classified into two broad
categories: lumped systems ad distributed
systems. Lumped systems, such as me-
chanics and electric circuit theory, have
only one independent variable: time;
hence, they are described by ordinary dif-
ferential equations. Distributed systems, or
fields, model spatial dimensions as well as
time. The concept of continuous fields has
wide-ranging applications throughout
physics and engineering, including such
diverse areas as heat transfer, fluid me-
chanics, electrostatics, electromagnetics,
acoustics, and particle diffusion.13

A continuous field is approximated by
segmenting it into a mesh of node points
and then discretizing the differential equa-
tions that describe the field to produce

local element matrices for each node.
These local matrices are assembled into a
global system matrix by superposition.
Finally, the global matrix, representing a
system of simultaneous linear equations, is
solved for the unknown variables, such as
pressure or temperature. For nonlinear or
time-dependent problems, the entire proc-
ess must be repeated many times for every
deformation increment, or time slice.14

To improve the resolution of the model,
the number of node elements can be in-
creased, or a finer time step used. Either
method drastically increases the computa-
tion time. For large problems, the global
solution step is dominant, and hence there
is demand for faster solution of larger
matrices. Fortunately, it is an excellent
application for a replicated VLSI archi-
tecture.

Matrix-vector product. The MVP is
the simple but fundamental operation that
dominates scientific matrix computing.15 It
is the basis of both matrix multiplication
and linear equation solving and is the pri-
mary operation around which all
supercomputers are designed and bench-
marked.16

Product forms. The MVP is a sum-of-
products operation: y = A * x, where y is a
vector with m elements, A is a matrix with
m rows and n columns, and x is a vector
with n elements. In Fortran, this may be
expressed as either of the following doubly
nested loops, which differ only in the order
of loop nesting:15

Form ij--scalar accumulation (SDOT)

 DO 20 i = 1, m
 y(i) = 0.0
 DO 30 j = 1, n
 y(i) = y(i) + A(i,j) * x(j)
30 CONTINUE
20 CONTINUE

Form ji--vector accumulation (SAXPY)

 DO 10 i = 1, m
 y(i) = 0.0
10 CONTINUE
 DO 20 j = 1, n
 DO 30 i = 1, m
 y(i) = y(i) + A(i,j) * x(j)
30 CONTINUE
20
CONTINUE

Note that the computation performed by
the two forms is identical: the accumula-
tion in y of a row or column of A multi-
plied by x. Both forms yield the same an-
swers, including round-off errors, and both
require the same amount of arithmetic
work.

Locality of accumulation. The difference
between these two forms is in the locality
of the accumulation (Figure 1). form ij
accumulates into a single element of y the
sum of the element-by-element products of
a row of y against the vector x. This is
termed in mathematics a dot product, and
is the SDOT routine in the widely used
Basic Linear Algebra Subprogram (BLAS)
library.17 The complete MVP is accom-
plished by m dot products, involving the
same vector x with successive rows of A.
Form ji, on the other hand, accumulates
into all the elements of y the products of a
single element of x with the respective
element of a column of A. It is the SAXPY
(for “A times X Plus Y”) routine of the
BLAS. Below, it is called VSMA, for
vector/scalar multiply-add. A complete
MVP is accomplished by n such VSMA
operations, involving successive elements
of x against successive columns of A.

Cost of accumulations. The locality of
the summation is critical to implementa-
tion costs, since y must be both read and
written for each accumulation, while A and
x are only read. Thus the access rate re-
quired of y is double that of A and x. The
SDOT form sums a scalar (single element)
at a time, which means that a high-speed
register can be used to hold the single ele-
ment of y being accumulated. The VSMA
form, on the other hand, sums across an

entire vector, requiring a several-thousand-
word memory (64 bits wide) to hold all of
y. Two copies of this vector memory will
usually be required: one to supply read
data and one to accept writes of updated
accumulations. Thus, at a given perform-
ance level, the VSMA form will be more
expensive than the SDOT form. Or, if only
one y vector register can be used per mul-
tiply-adder, then VSMA will run at half
the rate of SDOT.

A possible countervailing factor may oc-
cur of a pipelined adder is used. A pipeline
is like a bucket brigade at a fire. Many
buckets can be in transit to the fire at any
instant in time; likewise several sums can
be in process of completion at once. Thus,
when SDOT is used, there will be as many
partial sums being accumulated in the ad-
der as there are stages (S) in the adder
pipeline: two to eight is a typical number.
At the completion of the dot product, the
partial sums in the pipeline have to be
collapsed into a single sum before being
stored into y. The overhead is approxi-
mately S (log2(S) + 1) arithmetic cycles.
For eight stages, this is 32 cycles, which
would be a serious (100%) overhead if the
dimensions were as small as 32. For larger
dimensions (like 1000) the overhead dwin-
dles to insignificance (3%). The other way
around this problem is to accumulate S
different dot products simultaneously, one
is each stage of the adder. Note that
VSMA doesn’t have a problem using
pipelined arithmetic, provided that the
problem dimensions are greater than S.

Parallel matrix-vector products. If sci-
entific matrix problems required only a
single matrix-vector product at a time, the
only way to increase speed would be to use

faster arithmetic and memory circuits to
implement a monolithic MVP unit. Indeed,
this rationale has driven designers of cur-
rent supercomputers to use the fastest
available ECL bipolar technologies. Fortu-
nately, however, problems involving ma-
trix-vector products always require multi-
ple MVPs to be evaluated. In a matrix
multiply or factor, there are on the order of
n different x vectors that all need to be
multiplied by the same matrix A (where n
is the dimension of the matrix). Thus, an
alternative tactic for gaining speed is to
devise parallel versions of the matrix-
vector product. Then, the most cost-
effective technology can be used to im-
plement an MVP module. The speed of a
single module is not critical, since overall
performance can be attained by replication.

Parallel forms. The minimum resources
required to implement a replicatable MVP
module are a 64-bit floating-point multi-
ply-adder, a scalar register to hold a single
element of x and a vector register to hold
the elements of y. Externally, a memory is
needed to hold A, along with a connection
over which a stream of successive Aij row
elements can be broadcast to all the mod-
ules (Figure 2).

For a parallel scalar accumulation
(PDOT), each of v modules receives a
broadcast row element of A, multiplies it
by the corresponding element of x from its
own vector register, and sums the resulting
element of y into its own scalar register.
For a parallel vector accumulation
(PVSMA), each module multiplies a
broadcast column element of A by the ele-
ment of x from its own scalar register, and
sums that into the appropriate element of y
from its own vector register. Assuming

Figure 1. Matrix-vector product forms.

Figure 3. FPS-164/MAX Scientific Computer.

Figure 2. Parallel matrix-vector product forms.

that the minimum of one vector register is
provided per module, then PVSMA will
operate at half the speed of PDOT.

Parallel implementations. Because only
a moderate number of modules are in-
volved, the elements of A can be broadcast
to the modules across a conventional bus.
The bus must be able to transmit a 64-bit
value every multiply-add time-step. At 6
MHz, for example, this is a 48
Mbytes/second communication rate. The
rate can be reduced if room is provided to
hold several vectors in each module. The
module can do several multiply-adds with
each broadcast data value. For example, if
a module can hold four vectors, the com-
munication rate for A can be reduced to

one quarter, or 12 Mbytes/second at a 6
MHz clock. In this manner, the size of the
local vector storage in each module can be
traded off against communication band-
width, so that, if desired, a board-level
MVP module can be scaled down to fit
within the constraints of a standard bus
(e.g., Multibus II or VMEbus).

Soon it will be possible to fit the float-
ing-point arithmetic, control, and commu-
nications interface on an MVP module
onto two VLSI chips, eliminating the
power and space consumed by the MSI
“glue” logic required in an off-the-shelf
design. Then, an entire module would con-
sist of only the two processing chips, plus
one to four 256K dynamic RAMs for vec-

tor storage. Given 10 MFLOPs (and 2
watts) per chip-scale module, total per-
formance of one gigaflop will be possible
from only a few hundred chips dissipating
a few hundred watts. Because of the num-
ber of modules and the limited drive capa-
bility of VLSI chips, it will not be appro-
priate to use broadcast communication.
Instead, a one-dimensional systolic pipe-
line can be arranged to feed data directly
between adjacent chips.

The FPS-164/MAX
The FPS-164/MAX matrix supercom-

puter is the combination of a low-cost sci-
entific computer with up to 15 VLSI-based
matrix-vector product board-modules

Figure 4. FPS-164/MAX memory map.

(Figure 3). Since each physical module
implements eight logical modules, the
maximum parallelism is of the order 120.
The FPS-164 provides the considerable
system resources necessary for large-scale
scientific computing.18 These include 11
MFLOPs of 64-bit floating-point vector
and scalar arithmetic, a large physical
memory (up to 15 megawords), an opti-
mizing Fortran-77 compiler, and a capa-
cious disk storage (up to 17.3 billion
words). It is used both as a Fortran-
programmable scientific mainframe and as
a dedicated computer to run engineering
packages, such as Ansys (for structural
analysis) or Spice (for circuit simulation).
For a more detailed description of the
MAX module see Madura et al.19

The FPS-164/MAX, like many
supercomputers, is always networked with
a mainframe or superminicomputer, such
as a VAX-11/780, an IBM 4XXX, or an
IBM 30XX. The front-end computer han-
dles interactive time-sharing, while the
FPS-164/MAX concentrates on arithmetic-
intensive calculations. This division of
labor allows each computer to be used
more cost effectively and avoids the need
to change the entire computing environ-
ment to accommodate the increasing de-
mands of scientific computing.

MAX module architecture. Just as the
FPS-164 enhances an interactive main-
frame for general scientific computing, the
Matrix Algebra Xcelerator (MAX) mod-
ules enhance the FPS-164 CPU for linear
algebra. The module architecture is tuned
exclusively for the matrix-vector product.
Because the FPS-164 can supply a large
memory and general Fortran programma-
bility and because the MVP is such a very
regular operation, it has been possible to
minimize the amount of memory, control,
and communications support logic re-
quired per module, in favor of maximizing
the amount of VLSI floating-point arith-
metic.

Communication. The parallel matrix-
vector product A * x is performed by
broadcasting data from A to all the repli-
cated modules, each of which holds a dif-
ferent vector x. The total number of data
points required per floating-point operation
is very low, on the order of 1 / n for an
n × n matrix, so that a very high aggre-
gate performance can be supported with a
moderate bus rate. The FPS-164 memory
subsystem, with a synchronous memory

bus (to permit broadcasting), no data
cache (to avoid stale data problems), and
up to 29 large (16- × 22-inch) board slots
available, is an ideal existing physical
framework for board-scale replication.
Each MAX module is implemented as a
storage board that plugs into an FPS-164
memory slot.

The FPS-164/MAX has a 16-megaword
address space, of which 15 megawords can
be used to address physical memory. The
highest megaword of the address space is
divided into 16 64K-word segments, one
for each of up to 15 MAX modules (Figure
4). The last 64K address segment is the
broadcast segment, which is recognized by

all the modules so that data or control can
be director simultaneously to all 15 mod-
ules. Inside a particular module, the lower
32K addresses are divided into eight 4K-
word blocks, one for each vector register.
Finally, each module has several addresses
for its scalar status, and control registers
and for supplying data to initiate comput-
ing. A program writes data into or reads
results from a MAX module by the same
two-instruction copy loop used to move
data between other portions of FPS-164
memory. The modules are, in effect, very
smart memory for the FPS-164 CPU, since
they have both computational ability and
storage.

Control. The matrix-vector product is a
very orderly operation. A stream of matrix
elements is broadcast to each module,
which does a multiply-add with data con-
tained locally. Since all modules perform
the same computational sequence in lock-
step, this is single instruction/multiple data
(SIMD) control, the simplest form of par-
allel architecture. Essentially no control
needs to be replicated in each module.

There is no program sequencing inside
the MAX modules; instead, a program
inside the FPS-164 CPU synchronously
directs operation of each module by writ-
ing to the various MAX control addresses
within a given 64K address segment (Fig-
ure 4). Or it can control all modules si-
multaneously by using the Broadcast seg-
ment. Writing to the Control Register ad-
dress selects the vector form for the next
computation. The VectorRegisterIndex
address sets the next location in the vector
registers to be operated on. Writing data to
the AdvancePipe address actually causes a
multiply-add to take place. As an option,
IncrementIndex, which will post-increment
the VectorRegisterIndex, can also be cho-
sen. Finally, an optional Collapse can be
chosen, to complete the summation of the
partial products in a pipelined PDOT op-
eration.

In operation, the FPS-164 program se-
lects the vector form in al the modules by
writing to the ControlRegister address in
the Broadcast address segment. Next, it
writes to the Broadcast segment’s Vector-
RegisterIndex address to set the starting

address for all the MAX modules. Then,
after copying different matrix rows into
each vector register, the program loops,
reading a matrix column element from
FPS-164 memory and writing it to the
Broadcast segment’s AdvancePipe & In-
crementIndex address. This sequence
causes all modules to do a multiply-add
and advance to the next vector register
element. Usually, the same program loop
that directs computing in the MAX can
also route data to the FPS-164 CPU’s own
multiplier and adder, so the CPU’s com-
pute performance need not be wasted.

Memory. The total amount of memory
required for operations on matrices may be
quite large. A modest 1K × 1K matrix,
when fully populated, occupies one mega-
word. If each replicated module required
this much memory, the storage cost would
be unbearable. Fortunately, for n × n ma-
trices, only O(√n) storage is required per
module--enough to hold a few vectors.

The MAX modules can directly accom-
modate up to 2K long vectors, corre-
sponding to a four-megaword, full matrix.
Larger sized are handled by operating on
multiple 2K-element subvectors. An addi-
tional 2K words of address space per vec-
tor and scalar register to feed each of its
two space to permit every broadcast matrix
element to be computed against four vec-
tors per multiply-adder. The 4:1 local reuse
is necessary to avoid using up 100 percent
of the FPS-164 memory system’s band-
width. A four-instruction loop, with only
two memory operations, leaves 50 percent
of the memory bandwidth for disk I/O or
for supplying vector register indices for
sparse-matrix addressing techniques.

Arithmetic. In a matrix-vector product
the multiply is always followed by an add,
so the VLSI arithmetic chips in the MAX
modules are hardwired into this pattern
(Figure 5). The data element written to the
AdvancePipe address is always one of the
multiplier operands, and the multiplier
always feeds the adder. The only data path
choices, then, are the connections of the
vector and scalar registers, which may be
used to do a scalar accumulation (PDOT),
vector accumulation (PVSMA), or vector
multiply-scalar add (PVMSA) (see Table
4).

Figure 5. MAX Matrix-vector product module

For every multiply-add, the PDOT form
requires only a single read of the vector
registers, as well as a read/write of the
scalar registers (which, being much
smaller, can be designed to be twice as
fast). Thus in this form the two sets of
vector registers can keep the two multiply-
adders fully occupied, producing a maxi-
mum of 22 MFLOPs per MAX module,
for a possible overall maximum of 341
MFLOPs (including the FPS-164’s own
arithmetic). The PVSMA form requires
twice as much vector register bandwidth
and so can support only one multiply-
adder, for 11 MFLOPs per module, or 170
MFLOPs total.

With a suitable arrangement of data in
the vector registers, the MAX modules can
perform either real or complex arithmetic
operations at the same MFLOP rate. Natu-
rally, since a complex multiply-add has
four times as many operations as the real
form, a complex operation takes four times
as long to complete as the same-dimension
real operation. If the AdvancePipe &
AutoIncrement addresses are used to trig-
ger computing in the modules, successive
locations are used in the vector registers,
as is appropriate for full, banded, or profile
matrices. If, however, the VectorRegister-
Index is set before each multiply-add, indi-
rect-addressing techniques can be used for
operating on random sparse matrices. In
this case, the program reads the indices
from a table of pointers in FPS-164 mem-
ory. The resulting four-instruction compute
loop operates at nearly the same efficiency
as the full matrix case, degraded only by
I/O memory contention.

MAX software. The MAX modules can
be accessed by four levels of FPS-164
software, depending upon the needs of the
user for progressively more detailed con-
trol of the computation. This modular ap-
proach encourages software portability by
localizing the interface between the rela-
tively invariant algorithm and the transi-
tory hardware. These standardized soft-
ware interfaces cover a range of hard con-
figurations, with and without MAX mod-
ules, transparently to the global applica-
tions program.

Applications packages. These perform a
complete end-user solution for an engi-
neering discipline like structural analysis.
They are appropriate for the user who per-
ceives the FPS-164/MAX as a tool, not as
a computer. ABAQUS, a finite-element

package from Hibbet, Karlsonn, Sorenson,
Inc. makes use of MAX for matrix solu-
tions.

Standard linear algebra software. The
Fast Matrix Solution Library (FMSLIB)
provides a complete set of equation-
solving routines for use by an applications
package designer. It efficiently solves real
or complex, symmetric or nonsymmetric,
simultaneous linear equations for problems
so large as to require “out of core” tech-
niques. It is applicable to a wide range of
problems, from finite element analysis to
electromagnetic boundary value problems.
FMSLIB will run at near full efficiency on
configurations ranging from none to 15
MAX modules, with varying amounts of
FPS-164 memory for buffering submatri-
ces.

Fortran call library. This set of subrou-
tines allows a Fortran program to load
submatrices into the MAX modules, to
initiate parallel operations such as dot
product or VSMA computations, and to
read back results. In a typical scientific
computation, 5 percent of the code will
perform at least 95 percent of the work.
When this work involves matrix computa-
tions, then it is appropriate to convert this
5 percent of the code into MAX subroutine
library calls.

Assembly language. Directly accessing
the MAX modules involves writing in the

multiparcel, pipelined assembly language
of the FPS-164. The code itself is rather
simple, consisting mostly of memory-to-
memory love loops, which load data into
the MAX vector registers or sequence
through parallel dot products or VSMAs.

Parallel linear algebra

A fundamental operation in linear alge-
bra is the process of multiplying two ma-
trices together. The process is conceptually
simple, but the total number of floating-
point operations is quite large: n3 multiply-
adds, where n is the dimension of the ma-
trix. In comparison, the somewhat more
complicated algorithms for solving a sys-
tem of linear equations (1/3n3 multiply-
adds) or QR factorization of a matrix
(2/3n3 multiply-adds), actually require less
work. The use of MAX is similar in all
these algorithms so in the following exam-
ples matrix multiplication is used for the
simplest illustration.

Sequential matrix multiplication. We
wish to compute the product C = A × B,
where A , B , and C are n × n matrices of
real numbers.

€

Cij = ΣAik × Bkj from k = 1 to n.

In vector terms, to find the ijth entry in
C, one takes the dot product of row i in A
with column j in B. Unequal dimensions
and complex elements are handled by
straightforward extensions to this algo-

Table 4. MAX vector forms

Name Operation Speed per MAX Module

Parallel scalar accumulation
(PDOT) S0 – 7 ← A × Vi 0 – 7 + S0 – 7 22 MFLOPs

Parallel vector accumulation
(PVSMA1) Vi 4 – 7 ← A × S0 – 3 + Vi 0 – 3 11 MFLOPs
(PVMSA2) Vi 0 – 3 ← A × S0 – 3 + Vi 4 – 7 11 MFLOPs

Parallel vector multiply / scalar add
(PVSMA1) Vi 4 – 7 ← A × V0 – 3 + Si0 – 3 11 MFLOPs
(PVSMA2) Vi 0 – 3 ← A × V4 – 7 + Si 0 – 3 11 MFLOPs

A Data written to AdvancePipe address
Sn – m Scalar registers n through m.
Vn – m Vector registers n through m
Vi VectorRegisterIndex (may be auto-incremented)

Note: Data may be type real or complex.

rithm. A translation into sequential Fortran
looks like this triply nested loop:

 DO 10 I = 1, n
 DO 20 j = 1, n
 C(i, j) = 0.0
 DO 30 k = 1, n
 C(i, j) = C(i, j)+A(i, k)*B(k, j)
30 CONTINUE
20 CONTINUE
10 CONTINUE

Parallel matrix multiplication forms.
The above code is but one of the six possi-
ble loop permutations for the matrix multi-
ply, depending upon the ordering of the i, j
and k loops.15 In each case a parallel ver-
sion is made by distributing v iterations of
the outer loop into v modules, where v is
no greater than n. A parallel version of the
inner loop is computed (see Figure 6).
These six versions are identical except for

the locality of accumulation, which will
have a major effect on performance, de-
pending upon the parallel architecture.

In parallel scalar accumulation (forms
ijk and jik), the v modules each accumulate
O(1) result at a time. This is the PDOT
form of the parallel matrix-vector product,
which MAX modules can execute at near
their maximum rate of 22 MFLOPs each.
In parallel vector accumulation (forms ikj

Figure 6. Parallel matrix multiplication forms

and jki), the v modules each accumulate
O(n) results at a time. This is the PVSMA
form of the matrix-vector product, which
MAX modules can execute at half their
maximum rate.

In parallel matrix accumulation (forms
kij and kji), the v modules each simultane-
ously update the partial sum that is a single
element of C when complete, requiring a
matrix memory that can simultaneously
perform v reads and v writes to the same
memory location. This is far too much
bandwidth to handle with the simple
broadcast-based communications used for
MAX. A floating-point version of the re-
place-add operation proposed for the NYU
Ultracomputer20 could accomplish this
feat. It uses a multistage switching network
to collapse multiple adds directed at the
same memory location. A more obvious
possibility is to use O(n2) processors, in
which case each can do its accumulation
locally.21 As one may surmise, locality of
reference is the dominant consideration in
parallel execution.

Within each locality of accumulation,
the differences are in the row and column
ordering. In the first form of each pair, C is
accumulated by row, and in the second
form C is accumulated by column. On
supercomputers with highly interleaved
memories, the ordering may dominate the
choice of form. Since feeding the MAX
modules requires no more bandwidth than
can be supplied by any one FPS-164 mem-
ory bank, the choice of ordering is not a
critical matter.

Parallel matrix multiplication using
the FPS-164/MAX. Form ijk of matrix
multiplication is done by performing v
iterations of the outer (i) loop simultane-
ously in multiple MAX modules, where v
is less than or equal to n. Since each row of
A is reused n times in the j loop, a total of v
of these loops can be distributed into the
vector registers of the MAX modules and
into the table memory of the FPS-164.
Then the j iterations of the inner (k) loop
can be calculated by the parallel dot prod-
uct (PDOT) form of the matrix-vector
product (Figure 7). This is expressed in
Fortran as:

 p = 2*m+1
 v = 4*p
 DO 10 i = 1, n - v + 1, v
 CALL PLOAD(A(i, 1), n, 1, n, v)
 DO 20 j = 1, n
 CALL PDOT(B(1,j),1,n,C(i, j),1,v)

20 CONTINUE
10 CONTINUE

where PLOAD and PDOT are assembly
language subroutines from the MAX sup-
port library.

This program fragment is explained line
by line as follows:

p = 2 * m + 1

There are two multiply-add pipelines in
each of m MAX modules, plus one in the
FPS-164 CPU. So, given a full comple-
ment of 15 MAX modules, the maximum
number of arithmetic pipelines (p) is 31,
for an asymptotic 31-fold speed-up over
the FPS-164 scalar processor.

v = 4 * p

Each of the p pipelines operates on four
vectors in round-round fashion, so that,
given a full complement of 15 MAX mod-
ules the matrix is processed in increments
of 124 vectors (v) per loop iteration.

DO 10 i = 1, n – v + 1, v

The i-loop steps through matrices A and C
in blocks of v rows at a time. It thus takes
n / v iterations of the i-loop to complete the
multiply.

CALL PLOAD(A(1, 1), n, 1, n, v)

Parameters for PLOAD:
A(1, 1) = initial row element of A to load into

the modules
n = stride between row elements of A
1 = stride between successive rows of A
n = row length of A
v = number of vectors to load

PLOAD loads eight successive rows of A
into the vector registers of each MAX
module, plus four rows into the table
memory of the FPS-164. The stride be-
tween elements in a given row is n because
Fortran stores matrices in column order.

DO 20 j = 1, n

The parallel dot product is done n times,
once for each column in B. This is a total
on n * v dot products per loading of rows
into the MAX modules.

CALL PDOT(b(1, j), 1, n, C(i, j), 1, v)

Parameters for PDOT:

B(1,j) = initial column element of B to broad-
cast to the modules

1 = stride between column elements of B
n = column length of B

C(i, j) = initial column element of C
1 = stride between column elements of C
v = number of parallel dot products

PDOT clears the v scalar registers and then
does an n element dot product of the jth
column of B against all the v rows of A that
are resident in the MAX modules and in
the FPS-164 table memory. At the com-
pletion of the parallel dot product, the v
result elements are stored into the jth col-
umn of C.

20 CONTINUE
10 CONTINUE

The two loops take n2/v iterations in-
stead of n2. The timing components are
summarized in Table 5.

The speedup approaches p (which is
v / 4, or 2m + 1) when n>>v and n>>0.
Figure 8 shows overall performance on
matrix multiply, and Figure 9 shows effi-
ciency, defined as the realized fraction of
peak performance (22 MFLOPs/module).
The “stair steps” are caused by quantiza-
tion effects that occur when n is just a little
larger than an even multiple of v. In such a
case, only a few of the modules (n modulo
v) will be doing useful work during the last
i-loop iteration. For large n (like 2048), the
curves smooth out, since v is at most 124
and hence much less than n.

Figure 7. Parallel matrix multiply on the FPS-164/MAX.

To multiply very large matrices stored
on disk, one uses a familiar double-buffer-
ing scheme to overlap I/O and computing.
The previous submatrix result is written to
the disk, and the next operands are read
from the disk, all during computation of
the current matrix product. Since each
point in an n × n submatrix is used O(n)
times, the disk can keep up with the arith-
metic for any reasonable-sized submatrix,
say 50 × 50. One simply codes buffering
loops around the above example and uses
the DOE extensions to Fortran-77, which
allow disk I/O to occur simultaneously and
asynchronously during computation.

Solving linear equations. If one replaces
the kernel of matrix multiplication by

Aij = Aij – Lik × Ukj

where L and U are lower triangular and
upper triangular matrices, one has essen-
tially the code needed to solve systems of
n equations in n unknowns. The MAX
architecture applies to solving systems of
equations as well as to matrix multiplica-
tion. The methods of dealing with disk-
resident problems by using active subma-
trices work equally well here. Factoriza-
tion required that the computed dot prod-
ucts be used directly to update the subma-
trix elements, a feature incorporated into
the MAX design.

Function evaluation. As an example of
a less obvious use of the parallel multiply-
add architecture, consider the problem of
evaluating intrinsic functions like SIN,
EXP, and ATN with polynomial approxi-
mations. A polynomial can be thought of
as the dot product of a vector (1, x , x2,
..., xn) with a vector of coefficients. If one
wishes to evaluate several polynomial
functions Pi of several unknowns xj, the
evaluation is equivalent to a matrix multi-
plication. The matrix of powers of the xj

elements can be computed during the ma-
trix multiplication. Therefore, the MAX is
not restricted to equation solving but can
also participate in kernel operations asso-
ciated with equation setup.

FPS-164/MAX
applications

The actual use of such specialized hard-
ware in particular applications is best
shown by examples. The following three

Table 5. Matrix multiply timing

Cycles

Work
Multiply-adds 4n3/v (v = 4, 12, 20, . . . 124)

Overheads
Fortran subroutine calls ~100(n2 + n)/v
Vector loads into modules 2n2

Result reads from modules 2n2

Pipeline start-up and dot product collapse 26n2/v

Figure 8. Matrix multiplication performance.

Figure 9. Matrix multiplication efficiency.

application areas illustrate increasing em-
phasis on matrix algebra as a percentage of
the total run.

Structural analysis. A very large class
of design analysis problems involves the
study of elastic bodies under stress. Com-
puter simulations of objects ranging from
small machine parts to entire buildings can
be tested for strength or optimized for
weight be means of a technique called fi-
nite element modeling. FEM can also be
applied to modeling electromagnetic fields
for the design of motors and generators
and to simulating heat transfer and fluid
flow.

The essence of this technique is the dis-
cretization of the object or region being
modeled into a web of simpler shapes
(elements) for which exact solutions can
be found. One must match the boundary
conditions between elements and account
for external forces; it is this matching that
gives rise to a large set of closely coupled
equations. Typically, from several hundred
to almost 100,000 (sparse) equations must
be stored on disk and solved with methods
that carefully limit the amount of data in
memory at any given time.

When a conventional scalar machine is
used, factoring the equations consumes
about 60 to 90 percent of the total run. It is
therefore appropriate to consider architec-
tures that speed the factorization by up to

approximately ten times before the non-
factoring portion of the run dominates the
total time. In combination with the general
arithmetic features of the FPS-164, a single
MAX module provides a speed approxi-
mately 100 times that of a typical super-
minicomputer for reasonably large models
involving 10,000 equations.

Achieving this speed on low-cost hard-
ware has two benefits: First, because turn-
arounds are reduced from hours to min-
utes, the analysis portion of a design cycle
can be made interactive rather than batch-
oriented. Second, the models invariably
grow to consume the added power through
dynamic modeling, automatic design opti-
mization, three-versus two-dimensional
models, nonlinear refinements, and other
improvements formerly inaccessible to
anyone without great patience.

Computational chemistry. Molecules
and groups of molecules can be modeled
on a computer by a range of methods. In
general, these methods make more simpli-
fying assumptions as the number of atoms
increases. One would like to be able to
study molecules large enough to be of
biological significance for pharmaceutical
applications, perhaps using approximations
such as semiempirical methods or mo-
lecular modeling techniques. Smaller
molecules, relevant to the study of com-
bustion and dye properties, can be simu-

lated using AB-INITIO models accurate
enough to substitute for actual experi-
ments.

The self-consistent field (SCF) approach
and its variants achieve this accuracy by
applying the underlying laws of quantum
physics (as opposed to the more classical
balls-on-springs approach). The SCF
method has a very high computational
cost, however, proportional to the sixth
power of the number of electrons in the
molecule. A basic operation in the SCF
method is a matrix multiplication, which
must be repeated until the solution con-
verges. The matrix size is typically on the
order of 1000 × 1000 elements. When run
on an FPS-164 without any MAX units,
about 95 percent of the run is spent on
matrix multiplications. Adding nine MAX
units to the FPS-164 speeds the matrix
multiplication by a factor of 19, rendering
the overall rum ten times faster. The net
speed is again two orders of magnitude
greater than that of a typical supermini-
computer. This extends the size of tracta-
ble molecules into the 100-atom range,
large enough to begin to have biochemical
significance (for example, short strands of
DNA, drug receptor sites).

Radar cross sections. Ascertaining the
radar reflection of airplanes and ships is of
obvious practical importance. To model
the usual situation in which the object is
struck by an incoming radar wave from a
distant source, it is necessary to use a so-
called integral equation formulation. This
results in a matrix that is completely
“full” — i.e., there is no sparsity pattern
that can be exploited to save computational
work. There is also no symmetry in the
matrix (unlike finite element modeling,
where mirror symmetry about the diagonal
of the matrix can be used to cut the work
in half), and the elements of the matrix are
complex-valued, increasing the work by a
factor of four.

For proper modeling, the matrix must be
at least 10,000 × 10,000. It must be fac-
tored to derive the pattern seen by the ra-
dar detectors; this factoring requires almost
three trillion floating-point operations and
exceeds 99 percent of the total run. The
full FPS-164/MAX configuration can sus-
tain an average speed exceeding 300
MFLOPs on such a problem, solving it in
about three hours. In this case, the use of
parallel vector hardware does not simply
increase cost efficiency; the crucial point isThe FPS-164 Scientific Computer and the FPS D64 Disk System. The computer is the

first to be implemented from replicated VLSI arithmetic parts.

that the problem is made feasible for re-
searchers without access to a general-
purpose supercomputer. A single run on a
superminicomputer would require over one
year!

ecause of its overwhelming
MFLOPs-per-dollar advantage over
other technologies, replicated MOS

VLSI offers by far the most exciting po-
tential for advancing the speed and reduc-
ing the cost of supercomputing. The FPS-
164/MAX Scientific Computer is the first
replicated VLSI-based supercomputer to
be delivered. The first 45 MAX modules
(representing about one gigaflop of com-
puting) were shipped within one month of
the receipt of working 64-bit arithmetic
parts in April 1985. This rapidity was
made possible by three circumstances:

1. The MAX modules could be added
into the existing hardware/software
framework of the FPS-164.

2. The hardware/software design could
be checked out with a prototype us-
ing 32-bit arithmetic parts.

3. The matrix-vector product is a very
orderly algorithm, allowing for sim-
ple control and data paths.

The first month’s shipment represented a
major increment in the commercially in-
stalled base of supercomputing power.
Such is the ease by which supercomputers
using replicated VLSI can revolutionize
large-scale scientific computing.

References

1. D. Stevenson, “A Proposed Standard for
Binary Floating-Point Arithmetic,” Com-
puter, Vol. 14, No. 3, March 1981, pp.
51–62.

2. J. Cavanagh, Digital Computer Arithme-
tic, McGraw-Hill, New York, 1984, pp
353–454.

3. F. Ware, L. Lin, R. Wong, B. Woo, and
C. Hanson, “Fast 64-bit Chip-set Gangs
Up for Double-Precision Floating-Point
Work,” Electronics, Vol. 57, No. 14, July
12, 1984, pp. 99–103.

4. J. Fandrianto and B.Y. Woo, “VLSI
Floating-Point Processors,” Proc. Seventh
Symp. Computer Arithmetic, June 4-6,
1985, pp. 93–100.

5. D. Gard and J. Oxaal, “CMOS Signal
Processors Push to Highest Throughput
for All,” Electronic Design, Vol. 32, No.
10, May 17, 1984, pp. 135–168.

6. G. C. Fox and S. W. Otto, “Algorithms
for Concurrent Processors,” Physics To-
day, Vol.37, No. 5, May 1984, pp. 50–58.

7. C.L. Seitz, “Concurrent VLSI Architec-
tures,” IEEE Trans. Computers, Vol. C-
33, No. 12, Dec. 1984, pp. 1247–1265.

8. R. Moore, T. Anzelmo, and C.G. Bell,
“Multiprocessor Makes Parallelism
Work,” Electronics, Vol. 58, No. 35,
Sept. 2, 1985, pp. 46–48.

9. E. Arnould, H.T. Kung, O. Menzilcioglu,
and K. Sarocky, “A Systolic Array Com-
puter, Proc. 1985 IEEE Int’l Conf.
Acoustics, Speech, and Signal Process-
ing, March 26–28, 1985, pp. 233-239.

10. C.L. Seitz, “The Cosmic Cube” CACM,
Vol. 28, No. 1, Jan. 1985, pp. 22–33.

11. R. Rosenberg, “Supercube,” Electronics,
Vol. 58, No. 6, Feb. 11, 1985, pp. 15–17.

12. W. A. Wulf and C. G. Bell, “C.mmp—A
Multi-Mini-Processor,” AFIPS Conf.
Proc . , (FJCC, pt. II), Vol. 41, pp.
765–777, 1972.

13. V. Vemuri and W. Karplus, Digital Com-
puter Treatment of Partial Differential
Equations, Prentice-Hall, Englewood
Cliffs, N.J., 1981.

14. C. Norrie, “Supercomputers for Super-
problems: an Architectural Introduction,
Computer, Vol. 17, No. 3, Mar. 1984, pp.
62–74.

15. J. Dongarra, F. Gustavson, and A. Karp,
“Implementing Linear Algebra Algo-
rithms for Dense Matrices on a Vector
Pipeline Machine, SIAM Review, vol. 26,
No. 1, Jan. 1984, pp. 91–112.

16. J. Dongarra, “Performance of Various
Computers Using Standard Linear Equa-
tion Software in a FORTRAN Environ-
ment,” ACM Computer Architecture
News, Vol. 13, No. 1, Mar. 1985, pp.
3–11.

17. C.L. Lawson, R.J. Hanson, D.R. Kincaid,
and F.T. Krough, “Basic Linear Algebra
Subprograms for FORTRAN Usage,”
ACM Trans. Mathematical Software, Vol.
5, No. 3, Sept. 1979, pp. 308–323.

18. A. Charlesworth, “An Approach to Sci-
entific Array Processing: the Architec-
tural Design of the AP-120B/FPS-164
Family,” Computer, Vol. 14, No. 9, Sept.
1981, pp. 18–27.

19. D. Madura, R. Broussard, and D. Strick-
land, “FPS-164/MAX: Parallel Multi-
processing for Linear Algebra Opera-
tions,” Proc. 1985 ARRAY Conf., Apr.
14-17, 1985, pp. 33-50.

20. A. Gottlieb, R. Grishman, C.P. Kruskal,
K.P. McAuliffe, L. Rudolph, and M. Snir,
“The NYU Ultracomputer—Designing an
MIMD Shared Memory Parallel Com-

puter,” IEEE Trans. Computers, Vol. C-
32, No. 2, Feb. 1983, pp. 175–189.

21. R.W. Hockney, and C.R. Jesshope, Par-
allel Computers, Adam Hilger, Bristol,
U.K., 1981, pp. 276–280.

Alan E. Charlesworth is staff engineer under
the vice president of engineering at Floating
Point Systems, Inc. He joined Floating Point
Systems in 1974 and in 1975 codesigned the
hardware and software architecture of the AP-
120B array processor. He established the FPS
software department and managed it from 1975
through 1977. In 1978, he joined the new prod-
ucts group of the Advanced Engineering De-
partment and in 1979 led the hardware and
software architectural design of the FPS-164
64-bit scientific array processor.

Charlesworth attended Stanford University
from 1963 through 1967.

John Gustafson is product
development manager for scientific/engineering
products at Floating Point Systems, Inc. Prior to
assuming his present responsibilities, Gustafson
was a senior applications specialist with FPS:
his responsibilities included physics, chemistry,
and petroleum engineering applications for the
64-bit product line. Before joining FPS, he was
a software engineer for the Jet Propulsion Labo-
ratory in Pasadena, California.

Gustafson received a BS degree from Caltech
in 1977, and MS and PhD degrees from Iowa
State University in 1980 and 1982. His research
interests include numerical analysis, algorithm
theory, and special functions.

The authors’ address is Floating Point Sys-
tems, Inc., Portland, OR 97223.

B

