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TOTAL POSITIVITY OF MEAN VALUES
AND HYPERGEOMETRIC FUNCTIONS∗

B. C. CARLSON† AND JOHN L. GUSTAFSON†

Abstract. The weighted power mean of two positive variables is strictly totally positive (STP) if its order t
satisfies –∞ < t < 0 and its reciprocal is STP if 0 < t < ∞. The reciprocals of the logarithmic mean, Gauss’s
arithmetic-geometric mean, and the Schwab-Borchardt mean are STP. The hypergeometric R-function
R–α(β, β′ ; x, y), x, y > 0, which is equivalent to 2F1 with argument 1 – x ⁄ y, is STP if α, β, β′, and β + β′ – α are
positive. With weaker restrictions this function is represented in a new way as a convolution. Higher order
positivity is discussed for some other hypergeometric functions, including incomplete elliptic integrals.

1. Introduction. A real-valued function f (x, y) of two real variables is said to be
strictly totally positive (STP) on its domain of definition if every n × n determinant with
elements f (xi, yj), where x1 < x2 < … < xn and y1 < y2 < … < yn, is strictly positive for
every n = 1, 2,…. If the determinants are strictly positive for n = 1, 2, …, r, then f is
said to be strictly positive of order r (SPr). The principal reference for the subject is
Karlin [6], who writes STPr in place of SPr and sometimes STP∞ for STP. Many
applications to statistics, mechanics, and differential equations arise from the circum-
stance that a totally positive function is the kernel of a variation-diminishing transform.

We refer to [6] or [7, Chap. 18] for more precise statements and proofs of several
basic facts:

(1.1) exy
 is STP for x, y real [6, pp. 15–16].

(1.2) If both g and h are strictly increasing functions, or if both are strictly
decreasing, and if F(x, y) = f (g(x), h(y)), then F is SP, if f is SPr [6, p. 18].

(1.3) If g and h are strictly positive functions, and if F(x, y) = g(x) f(x, y) h(y), then
F is SPr [6, p. 18].

(1.4) If f (x, y) = ∫Z g(x, z)h(z, y)) dσ(z), where σ is a positive σ-finite measure on Z
and the integral converges absolutely, then f is SPr on X × Y  if g  is SPr on
X × Z and h is SPr on Z × Y [6, pp. 16–17].

To these four rules we add two more:

(1.5) If (1.4) is modified so that either

    

€ 

1

f x, y( )
=

h(z, y)
g(x, y)

dσ z( )
Z

∫  or 

    

€ 

f x, y( ) =
dσ z( )

g(x, z)h z, y( )Z

∫ ,

then f is SP2 if g  and h are SP2. This follows from [6, Eq. (2.5)] and the
observation that a11, a12, a21, a22 > 0 implies that the 2 × 2 determinant with
elements ai j is strictly positive if and only if the 2 × 2 determinant with
elements 1 ⁄ ai j is strictly negative.

(1.6) If a > 0 then (x + y)–a
 is STP for x, y > 0.

Apparently (1.6) is new except for the case a = 1 [6, pp. 149–150], which dates
back to Cauchy and demonstrates that all minors of the Hilbert matrix are positive. The
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proof of the general case follows from the integral representation of the gamma
function [2, Ex. 3.2-3],

    

€ 

(x + y)−aΓ a( ) = ta−1e
− x + y( )t

dt,
0

∞

∫
x + y( )

−a
= exze zydσ z( )−∞

0

∫ ,

where dσ = (–z)a–1dz ⁄ Γ(a). The proof is completed by using (1.1) and (1.4).

2. Power means. The weighted power mean [4, p. 13] of order t is defined by

(2.1)
    

€ 

M t x, y( ) = wxt + 1−w( )y t[ ]
1 t

,      t ≠ 0

where x, y > 0 and 0 < w < 1.
THEOREM 2.1. If 0 < t < ∞, then 1 ⁄ Mt (x, y) is STP for x, y > 0. If –∞ < t < 0 then

Mt(x, y) is STP for x, y > 0.
Proof. It follows from (1.6) and (1.2) that [wx′ + (1–w) y′]–a is STP if a > 0 and

t ≠ 0. Assuming 0 < t < ∞ and putting a = 1 ⁄ t, we conclude that 1 ⁄ Mt (x, y) is STP. If
–∞ < t < 0 we put a = –1 ⁄ t.

Note that the geometric mean, M0 (x, y) = xw y1 – w, is not STP because the rows of
the relevant determinants are proportional. The possibility of proportional rows likewise
keeps M∞ and M –∞ [4, p. 15] from being STP, although the determinants are
nonnegative.

If a > 0 and c ≥ 0, (x + y + c)–a is STP for x, y > 0 by (1.6) and (1.2). Hence the
weighted power mean of several variables, [Σwi xi

t]1 / t, has the positivity properties of
Theorem 2.1 in any two of the variables if the others are held fixed.

3. Iterative means. If x, y > 0 let x0 = x and y0 = y and consider three separate
iterative processes in which xn and yn approach a common limit as n → ∞:

(3.1)
    

€ 

xn+1 =
1
2

xn +
1
2

xn yn( )
1 2

,
    

€ 

yn+1 =
1
2

yn +
1
2

xn yn( )
1 2

,
    

€ 

xn , yn → L x, y( ) ,

(3.2)
    

€ 

xn+1 = xn + yn( ),
    

€ 

yn+1 = xn yn( )
1 2

,
    

€ 

xn , yn → M x, y( ) ,

(3.3)
    

€ 

xn+1 = xn + yn( ),
    

€ 

yn+1 = xn+1yn( )
1 2

,
    

€ 

xn , yn → S x, y( ) .

Here L is the logarithmic mean, M is Gauss’s arithmetic-geometric mean, and S is the
Schwab-Borchardt mean1. The reciprocal of each has an integral representation [1]:

(3.4)

    

€ 

1

L x, y( )
= R−1 1,1; x, y( ) =

ln x − ln y
x − y

,

(3.5)

    

€ 

1

M x, y( )
= R−1/ 2

1
2

,
1
2

; x2, y2
 

 
 

 

 
 ,

(3.6)

    

€ 

1

S x, y( )
= R−1/ 2

1
2

,1; x2, y2
 

 
 

 

 
 =

y2 − x2( )
−1 2

arccos x y( ), x < y,

x2 − y2( )
−1 2

arccosh x y( ), x > y,

 

 
 

 
 

                                                  
1The iterative process converging to S was proposed but not published by Gauss in 1800 (for more details see
[1]). Schwab [9, pp. 103–107] published it in 1813 and Borchardt in 1880. We thank Professor I. J. Schoenberg
for reference [9].
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where

    

€ 

R−α β , ′ β ; x, y( ) = ( x + z)−β z + y( )
− ′ β 

dσ z( )
0

∞

∫ ,

(3.7)

    

€ 

dσ z( ) =
Γ β + ′ β ( )

Γ α( )Γ β + ′ β −α( )
zβ + ′ β −α−1dz,       0 <α < β + ′ β .

It follows from (1.4) and (1.6) that R –α (β, β′; x, y) is STP for x, y > 0 provided β, β′ > 0
and 0 < α < β + β′. Use of (1.2) completes the proof of the following theorem:

THEOREM 3.1. The reciprocal means 1 ⁄ L(x, y), 1 ⁄ M(x, y), and 1 ⁄ S(x, y) are STP
for x, y > 0.

The means M  and S are the best-known members of a family of twelve iterative
means Li j (x, y) constructed by letting

(3.8) xn+1 = fi (xn, yn), yn+1 = fj (xn, yn), i ≠ j,

where

    

€ 

f1 x, y( ) =
1
2

x + y( ) ,
    

€ 

f2 x, y( ) = xy( )
1 2

,

(3.9)

    

€ 

f3 x, y( ) = x
x + y

2

 

 
 

 

 
 

1 2

,
    

€ 

f4 x, y( ) = y
x + y

2

 

 
 

 

 
 

1 2

.

For each of the twelve choices of i and j, i ≠ j, the common limit of xn and yn as n → ∞
is Li j (x, y). For example, the Schwab-Borchardt mean S is L14. In each case a suitable
negative power (–1 ⁄ 2 or –1 or –2) of Li j (see [1]) is an R-function (3.7) with α, β, β′
such that it is STP. The mean L also is essentially a member of this family, as one sees
by replacing each variable in (3.1) by its square.

4. Hypergeometric functions. The R-function (3.7) is a homogeneous variant of
Gauss’s hypergeometric function [2, §5.9]:

(4.1)
    

€ 

R−α β , ′ β ; x, y( ) = y−α 2 F1 α ,β ,β + ′ β ;1−
x
y

 

 
 

 

 
 

If b is a k-tuple of real numbers and x is a k-tuple of positive numbers, an extension of
(3.7) to several variables is [2, (6.8-6)]

    

€ 

R−a b, x( ) = xi + z( )
−bi

dσ z( )
i=1

k

∏0

∞

∫ ,

(4.2)

    

€ 

dσ z( ) =
Γ a + ′ a ( )
Γ a( )Γ ′ a ( )

z ′ a −1dz ,
    

€ 

′ a = bi − ai

i=1

k

∑ , a > 0, a′ = 0

The R-function has other representations that define it when a and a′ are not positive.
THEOREM 4.1. Let a, a′, b1, … , bk be real numbers and assume a + a′ = Σk

i=1bi and
aa′b1 

… bk ≠ 0. Let xi > 0, i = 1, … , k. For some i and j consider R –a(b, x) as a function
of x and xj, all other components of x being fixed; i.e., define f(xi, xj) = [(xi, xj)   

€ 

a
R –a(b, x)]. If k ≥ 2 and a, a′, bi, bj > 0, then f is STP. If k = 2 and exactly one of a, a′, b1,
b2 is negative, then 1 ⁄ f is SP2. If k > 2 and a, a′ > 0, then 1 ⁄ f is SP2 if bi bj < 0 while f is
SP2 if bi < 0 and bj < 0.
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Proof. In those parts of the theorem which assume a, a′ > 0, we may use (4.2) and
define a sigma-finite measure

    

€ 

dσ1 z( ) = xm + z( )
−bm

dσ z( )
m≠ i, j

∏ .

If bi, bj > 0 then (1.6) and (1.4) imply that f is STP. If bi < 0 then 
  

€ 

xi + z( )
−bi

 is the
reciprocal of a function that is STP and therefore SP2. Hence the last sentence of the
theorem follows from (1.5), as does the next to last sentence in case exactly one of b1

and b2 are positive, follows from [2, (5.9-20)] and (1.3).
Theorem 4.1 has interesting applications to elliptic integrals. For example, the pe-

rimeter of an ellipse [2, (9.4-5)] with semiaxes α and β is P(α, β) = 2"R1⁄2(1⁄2, 1⁄2, α2, β2),
and hence 1 ⁄ P(α, β) is SP2 for α, β > 0. The symmetric incomplete integrals of the first
and third kinds [3],

    

€ 

RF (x, y, z) = R−1 2
1
2

,
1
2

,
1
2

; x, y, z
 

 
 

 

 
 ,

    

€ 

RJ (x, y, z, p) = R−1 2
1
2

,
1
2

,
1
2

,1; x, y, z, p
 

 
 

 

 
 ,

where x, y, z, p > 0, are STP in any two variables when the others are fixed. We may
choose z = 1 by homogeneity and tabulate RF (x, y, 1) with rows and columns of the
table labeled by increasing values of x and y, respectively. If the table is regarded as a
matrix, all its minors are strictly positive. Similar remarks apply to the integral of the
second kind, RD (x, y, z) = RJ (x, y, z, z) = R –3 ⁄ 2(1⁄2, 1⁄2, 3⁄2, x, y, z)

Theorem 4.1 implies that 1 ⁄ Rt (β, β′; x, y) is SP2 for x, y > 0 provided β, β′ > 0 and
either t > 0 or t < –β – β′. We ask now whether the SP2 property can be strengthened to
STP or at least SPr for some r > 2. Because of [2, (5.9-21)] and (1.3), 1 ⁄ Rt(β, β′; x, y) is
SPr if and only if 1 ⁄ R –β – β′ – t (β, β′; x, y) is SPr. Hence it suffices to consider the case
t > 0.

If β, β′ > 0, it is not hard to show that 1 ⁄ Rt ( β, β′; x, y) is STP for x, y > 0 in
certain special and limiting cases. If t = 1 we use [2, (6.2-2)]. For any t > 0, as β + β′
tends to 0 or ∞ with β ⁄ β′ fixed, we use [2, (6.2-17), (6.2-18)]. (The cited equations are
valid also for nonintegral n.) Some additional special cases in which 1 ⁄ Rt is STP if t > 0
will be exhibited in §5.

Nevertheless, a numerical example shows that 1 ⁄ R  2 (1⁄2, 1⁄2; x, y) is not SP3. If
(x1, x2, x3) = (1, 2, 3) and ( y1, y2, y3) = (100, 200, 300), the 3 × 3 determinant with ele-
ments 1 ⁄ R 2 (1⁄2, 1⁄2; xi, yj) has the value –1.7 × 10–20. More generally a complicated alge-
braic expression for the 3 × 3 determinant with elements 1 ⁄ R 2 (β, β′; xi, yj) shows that
the determinant will be negative for fixed positive β < 1 if x3 ⁄ y1 (or y3 ⁄ x1) is suffi-
ciently small.

We conclude that if t > 0 or t < –β – β′, then 1 ⁄ R t is sometimes STP and some-
times not even SP3 but always SP2 if β, β′ > 0. Some further examples in which it is or is
not STP will be discussed in the next section by using the properties of Pólya frequency
functions.

Since the weighted power mean (2.1) of order t is the limit as c → 0+ of the
hypergeometric mean [R t (cw, c – cw; x, y)]1 ⁄ t, it is natural to ask whether the reciprocal
of the latter is STP if c > 0 and t > –c. In general it is not. For instance, if (x1, x2, x3) =
(1, 2, 3) and (y 1, y2, y3) = (100, 200, 300), the 3 ×  3 determinant with elements
1 ⁄ R 2(1⁄2, 1⁄2; xi, yj)

1 ⁄ 2 has the value –8.1 × 10–15.
5. Pólya frequency functions. A measurable real-valued function f defined on the

real line is called a strict Pólya frequency function (SPF) if f (x – y) is STP. (Some
authors require f to be integrable, but if f is SPF then e cx f (x) is integrable for suitable



TOTAL POSITIVITY OF MEAN VALUES 393

real c [8, p. 341].) If f (x – y) is SPr then f is called SPFr. A function is SPF2 if and only
if it is strictly log-concave on the real line [8, p. 337].

For example, if β, β′ > 0 and 0 < α < β + β′, then R –α ( β, β′; e2x, e2y ) is STP for
real x and y by Theorem 4.1 and (1.2). Since R –α is homogeneous of degree –α, we
have

R –α ( β, β′; e 2 x, e 2 y ) = e –α x e –α yR –α ( β, β′; ex – y
, e

y – x).

It follows by (1.3) that R –α ( β, β′; e x, e –x ) is SPF.
For another example, the Gegenbauer polynomial [2, (6.7-21)] of degree n is

(5.1)

    

€ 

Cn
ν cosh x( ) =

Γ 2ν + n( )
Γ 2ν( )Γ n +1( )

Rn ν ,ν ;ex ,e−x( )

If ν > 0 and n = 1, 2, 3, … , it follows from Theorem 4.1 that 1 ⁄ Cn
ν(cosh x) is SPF2 and

Cn
ν(cosh x) is strictly log-convex. The same is true for the Gegenbauer function defined

by (5.1) with any real n > 0 and ν > 0.
To see whether 1 ⁄ Cn

ν is SPF, we shall use a theorem of Schoenberg [8, p. 349]
with strictness conditions added by Karlin [6, p. 357]. Only an abridged version of the
theorem will be needed. A measurable real-valued function f defined on the real line is
SPF if its bilateral Laplace transform exists in an open strip containing the imaginary
axis and has the form

(5.2)

    

€ 

e−sx f (x)dx =
1

ϕ s( )−∞

∞

∫ ,
    

€ 

ϕ s( ) = Ceδs 1+ ais( )e−ai s

i=1

∞

∏ ,

where C > 0, the ai and δ are real, Σai
2 converges, and Σ|ai| diverges. Conversely, f is not

SPF unless the reciprocal of its bilateral Laplace transform is entire.
For example, if β, β′ > 0, –α < Re s < α, and α – 2β < Re s < 2β – α, then

(5.3)

    

€ 

e−sx R−a (β , ′ β ;ex ,e−x )dx
−∞

∞

∫

=

Γ β + ′ β ( )Γ α + s
2

 

 
 

 

 
 Γ

α − s
2

 

 
 

 

 
 Γ

2β −α + s
2

 

 
 

 

 
 Γ

2 ′ β −α − s
2

 

 
 

 

 
 

2Γ β( )Γ ′ β ( )Γ α( )Γ β + ′ β −α( )

,

as one finds by taking e –x as a new integration variable to obtain a Mellin transform,
substituting (3.7), and changing the order of integration. The representation of Γ by an
infinite product shows that (5.3) has the form (5.2). This was expected, since the
conditions of validity imply 0 < α < β + β′.

Since the product of the Laplace transforms of two functions is the transform of
their convolution, (5.3) suggests a new way of writing the hypergeometric function
(4.1) as a convolution:

(5.4)

    

€ 

R−a (β , ′ β ;ex ,e−x ) =
21−β − ′ β 

B β , ′ β ( )
sechα x − t( )e β + ′ β −α( )dt

−∞

∞

∫ ,

where |Im x| < " ⁄ 2, Re β > 0, and Re β′ > 0. These conditions of validity can be
verified by putting e 2t = (1 – u) ⁄ u to obtain Euler’s representation. Equation (5.4) is
particularly attractive if β and β′ are equal, as they are for Legendre and Gegenbauer
functions [2, §6.8].



394 B. C. CARLSON AND JOHN L. GUSTAFSON

We can now investigate further the higher order positivity of 1 ⁄ R t , t > 0. For
example,

(5.5)

    

€ 

e−sxdx

Rt 1,1;ex ,e−x( )
=

π sin
π

t +1

 

 
 

 

 
 

2sin
π
2

t + s
t +1

 

 
 

 

 
 sin

π
2

t − s
t +1

 

 
 

 

 
 

,         − t < Re s < t.
−∞

∞

∫

This result follows from (5.3): observe that [2, Ex. 5.9-13]

    

€ 

1

Rt 1,1;ex ,e−x( )
=

t +1( )sinh x

sinh t +1( )x[ ]
= R− t t +1( ) 1,1;e y,e− y( ),         y = t +1( )x.

The representation of the sine function by an infinite product shows that (5.5) has the
form (5.2). Hence 1 ⁄ R t (1, 1; ex, e –x), t > 0, is SPF and 1 ⁄ R t (1, 1; x, y), t > 0 is STP for
x, y > 0.

Another example, in which the Laplace transform can be evaluated by using
[2, Ex. 6.10-12, (4.2-4)] after taking e –x as a new variable of integration, is

(5.6)

    

€ 

e−sxdx

Rt
1
2
− t,

1
2
− t;ex ,e−x

 

 
 

 

 
 

−∞

∞

∫ =
22tΓ t + s( )Γ t − s( )

Γ 2t( )
,

where –t < Re s < t and t ≠ 1, 2, 3, …. Since this has the form (5.2), the condition
0 < t ≠ 1, 2, 3,… ensures that 1 ⁄ R t (1⁄2 – t, 1⁄2 – t, ex, e–x) is SPF and 1 ⁄ Rt(1⁄2 – t, 1⁄2 – t, x, y)
is STP for x, y > 0. The same is true of 1 ⁄ Rt–1(1⁄2 – t, 1⁄2 – t, x, y) with the same conditions
on t, x, y (see [2, Ex. 6.10-12]).

Despite the preceding special cases (as well as the cases mentioned near the end of
§4) in which 1 ⁄ R t , t > 0, is STP, a final example suggests that this state of affairs may
be the exception rather than the rule. If β , β′, are real and ββ′(β + β′ + 1) > 0, then
[2, (6.2-4)] yields

(5.7)

    

€ 

e−sxdx

R2 β , ′ β ;ex ,e−x( )
=

−∞

∞

∫ π
2
β + ′ β ( ) tanθ( )

β β +1( )
′ β ′ β +1( )

 

 

 
 

 

 

 
 

s / 4
sin sθ / 2( )
sin sπ 2( )

,

where –2 < Re s < 2, 0 < θ < " ⁄ 2, and tan θ = [(β + β′ + 1) ⁄ ββ′]1 ⁄ 2. If "  ⁄ θ = 3, 4, 5,…,
all zeros of sin(sθ ⁄ 2) are cancelled by zeros of sin(s" ⁄ 2). Then (5.7) has the form (5.2)
and 1 ⁄ R 2 (β, β′; ex, e–x) is SPF. (The case β = β′ = 1 coincides with the case t = 2 of
(5.5).) In particular, by (5.1), 1 ⁄ C2

ν(cosh x) is SPF if ν ⁄ (ν + 1) = cos(" ⁄ m), m =
3, 4, 5, …. On the other hand, if 0 < θ < " ⁄ 2 but θ does not have one of the listed
values, the reciprocal of the Laplace transform is not entire and 1 ⁄ R 2 (β, β′; x, y) is not
STP. The numerical example in §4 shows that it is not always in SP3.

Other interesting examples of sign regularity properties of hypergeometric func-
tions are contained in [10].
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