
	 1	

Transcription	of	“The	Great	Debate”:		
John	Gustafson	vs.	William	Kahan	on	Unum	Arithmetic	
Held	July	12,	2016	
Moderated	by	Jim	Demmel	
	
	
DEMMEL:	As	you	know,	John	Gustafson	recently	published	a	book,	called	The	End	of	
Error,	Unum,	in	which	he	proposes	a	new	floating-point	format,	called	“unums,”	

which	is	short	for	“universal	number,”	and,	as	
a	replacement	for	conventional	floating	point.	
And	as	the	book’s	title	suggests,	he	makes	
some	rather	strong	claims	about	what	unum	
can	do.	So	for	example,	that	they	are	easier	to	
use	than	floating	point,	more	accurate,	less	
demanding	on	energy,	on	memory	and	
bandwidth,	or	power,	and	guaranteed	to	give	
bitwise	identical	results,	and	in	most	
situations,	faster.	

	
So,	in	many	places	throughout	the	book,	John	acknowledges	the	contributions	of	
William	Kahan,	of	floating	point	arithmetic	of	course.	And	so	he	uses	many	of	
Kahan’s	examples,	throughout	the	book	about	how	floating	point	can	go	wrong,	to	
illustrate	the	potential	advantage	of	unum.		So,	for	example,	one	section	of	
Gustafson’s	book	is	entitled	“The	Wrath	of	Kahan”	[laughter]	and	another	is	entitled	
“Another	Kahan	Booby	Trap”.	So,	The	Great	Debate	is	foreshadowed	in	Section	18.1,	
where	Gustafson	responds	at	length	to	a	challenge	proposed	by	Professor	Kahan	to	
an	early	draft	of	the	book.	
	
Now,	this	development	has	not	stopped	with	this,	and	John	has	continued	to	develop	
these	ideas,	and	most	recently	he’s	proposed	something	called	SORNs,	for	Sets	Of	
Real	Numbers.	And	I	believe,	he	will	explain	that	new	proposal	here,	and	that	will	
also	be	a	subject	of	the	debate.	
	
So	the	way	this	is	going	to	be	organized	is	as	follows:	So	each	speaker,	starting	with	
John,	will	get	thirty	minutes,	just	to	explain	their	position.	And	you	can	only	ask	
explanatory	questions,	clarifying	questions.	Debate	questions	will	come	later.	And	
then	Professor	Kahan	will	get	his	thirty	minutes.	And	then	we’ll	have	thirty	minutes	
of	a	free-for-all.	But	I’m	the	Moderator	[laughter],	and	I	will	make	sure	everybody	
sticks	to	their	thirty	minutes	and	then	we’ll	ask	questions	and	the	two	gentlemen	
can	speak	on	it.	
	
So	without	further	ado…	John?	
	

	 2	

GUSTAFSON:		(takes	the	podium)	Thank	you	for	this	opportunity.	
	
KAHAN:	If	people	move	closer,	they’ll	find	it	easier	to	read	the	slides.	[commotion]	
	

GUSTAFSON:		So	I	also	have	a	take	on	why	this	debate	
is	occurring.	It’s	a	little	bit	different	from	what	you	just	
heard.	
	
The	End	of	Error:	Unum	Computing	had	dozens	of	
reviewers,	which	included	David	Bailey,	Horst	Simon	
(colleagues	of	Dr.	Kahan	at	Berkeley),	also	Gordon	Bell,	
John	Gunnels,	who	has	won	three	Gordon	Bell	awards,	
and	about	half	a	dozen	other	PhD	numerical	analysts.		
And	the	book	was	critiqued	not	just	based	on	its	
mathematical	content	but	also	on	its	style,	and	its	

approach,	since	it	was	aimed	at	the,	let’s	say,	pre-college	reader,	who	did	not	
necessarily	have	to	know	calculus	in	order	to	understand	a	lot	of	what	the	book	is	
about.	[audience	requests	adjustments	to	microphone]	
	
So	I	was	purposely	targeting	pre-calculus	people,	people	who	had	had	a	good	high	
school	education	in	mathematics.	So,	Professor	Kahan	has	had	the	manuscript	since	
November	2013,	at	least	a	preliminary	version,	Part	1,	and	we	had	email	
conversations	about	it,	but	all	email	cut	off	suddenly	in	July	2014	[laughter],	going	
back	and	forth,	but	then	I	posed	a	counter-question	to	him,	I	said,	“Can	you	solve	this	
one?”	And	then	the	line	went	dead.	I	didn’t	know	what	I	said,	but	I	think	it’s	possible	
health	problems	were	involved,	but	I	was	really	missing	his	contribution	because	I	
wanted	to	make	sure	I	wanted	to	make	sure	he	was	on	top	of	everything	I	was	about	
to	publish	and	would	be	able	to	give	me	his	feedback.	
	
Then	this	happened.		
	
The	book	came	out	in	
February,	and,	fairly	
quickly	became	the	
number	one	best	seller	
in	Numerical	Systems,	
admittedly	a	small	
category	but	there’s	
four	thousand	books	
on	Numerical	Systems	
on	Amazon,	and	it	
got…		eight	reviews	of	
five	out	of	five	stars,	and	they	kept	running	out	of	the	thing.	They	couldn’t	keep	it	in	
stock.	And	I	think	this	is	probably	what	roused	the	attention	of	Dr.	Kahan,	is	because	
people	were	actually	reading	this	thing,	so	he	should	do	something…	to	caution	
people	about	it	[chuckling	sounds].	

	 3	

	
So.	“The	Wrath	of	Kahan:	A	Bitter	Blog”.			As	you	may	know,	Kahan	does	not	submit	
papers	to	journals,	at	least	not	very	often.	What	he	does	instead	is,	he	writes	blog	
articles,	and	some	of	them	are…	very	colorful,	let’s	say.	You	know,	like,	“How	Java’s	

Floating	Point	Hurts	Everyone	
Everywhere.”		And	things	like	
that.	And	he	prepares	these	
diatribes,	and	he	loves	them,	
and	usually	labels	them	as	
“Work	in	progress.”	I	don’t	
know	whether	he	later	
changes	them	later	or	not.	But	
the	issue	we’re	discussing	
today,	the	future	of	number	
representation	on	computers,	I	
think	is	too	important	to	be	left	
to	the	bickering	of	two	old	men	
[chuckling	sounds].	

	
So.	He	was	kind	enough	to	share	with	me	the	38-page	attack	he	wants	to	post	about	
The	End	of	Error:	Unum	Arithmetic.		And	so	I	was	able	to	see	some	of	the	things	he	
plans	to	say.	I	expect	him,	probably,	to	be	covering	
some	of	these	things	today.	Since	this	is	the	only	
thing	that’s	really	finished,	I	won’t	be	talking	about	
what	are	now	called	“unums	type	1”	or	“unums	1.0.”	
I	don’t	have	any	material	prepared	about	2.0,	
because	in	fact	I’m	not	finished	with	it	yet,	ready	to	
show	the	world.	It’s	still	in	progress.	So	I	will	
respond	in	part	here	to	the	“Bitter	Blog”	that	I	have	
seen.	You	see	the	“Table	of	Contents”	there;	I’m	sure	
you	can’t	read	those	words.	
	
First	of	all,	I	think	everybody	has	this	reaction:	Variable	bit	size	is	just	too	darned	
expensive.	To	be	able	to	change	the	widths	and	sizes	of	representations	is	going	to	
be	a	headache	for	hardware	designers,	and	for	software,	and	storage,	and	so	on.	And	
I	always	sigh	and	say,	well,	it	doesn’t	have	to	be	variable	size;	you	can	do	these	
things	fixed	size.	But	if	you	do	have	to	use	variable	size,	you	don’t	need	an	additional	
set	of	pointers	in	order	to	pack	and	unpack	these	things.	There’s	these	three	bits—
three	fields	in	the	utag.	They	serve	as	a	pointer	to	the	next	unum,	so	you	untangle	it	
as	a	linked	list;	they	already	have	the	overhead	necessary	for	packing	and	unpacking.	
No	additional	bits	required.	So,	Chapter	7:		the	title	of	the	Chapter	is	“Fixed	Size	
Unum	Storage.”	And	I	don’t	know	how	people	can	miss	it,	pages	93	to	102,	talks	
about	how	you	can	make	sure	that	you	can	fill	matrix	arrays	with	unums	and	still	be	
able	to	have	constant-time	access	to	anything	and	do	exactly	what	you	would	do	
with	current	floating-point	arithmetic,	no	problems.	There	is	still	energy	and	power	
savings	when	you	unpack	things,	leaving	a	few	bits	unused.	Hardware	designers	

	 4	

know	how	to	turn	off	bits	if	they	know	that	certain	fields	within	a	64-bit	register	are	
not	going	to	be	touched.	So	even	within	the	chip	you	can	still	get	energy-power	
savings	in	the	unpacked	form.	
	
Now,	this	brings	up	an	example	that	
Kahan	calls	“A	Bogus	Analogy.”	
Here’s	what	I	put,	a	version	of	it.	In	
Courier,	16-point	type,	‘Unums	offer	
the	same	tradeoff	versus	floats	as	
variable	width	versus	fixed	width	
typefaces.	Harder	for	the	design	
engineer	and	more	logic	for	the	
computer,	but	superior	for	everyone	
else	in	terms	of	usability,	
compactness,	and	overall	cost.’	Do	
that	in	Times,	and	notice	how	much	
space	it	takes	up	on	the	screen.	Or	how	much	space	it	would	take	up	if	printed.		
	
Everybody	I	know	who	has	read	this,	understood	the	analogy.	Except…	Professor	
Kahan.	He	said,	‘BUNKUM!		Gustafson	has	confused	the	way	text	is	printed,	or	

displayed.	It	would	occupy	more	DRAM	
memory,	not	less!’	…Uh,	yeah,	it	takes	
more	DRAM	memory	to	take	less	space	
on	a	piece	of	paper	or	on	a	screen,	which	
might	be	the	most	valuable	resource	
these	days.	So,	I	was	saying	that	if	you	
have	more	memory,	you	can	do,	
certainly,	tighter	fitting	of	things	if	they	
only	have	to	take	up	the	amount	of	
space	that	they	each	require,	instead	of	
everything	has	to	as	big	as	the	largest	
letter.	So	the	same	way,	if	you	have	

variable	size	arithmetic,	you	can	shrink	and	adjust	and	in	general	you	will	save	
space	using	only	as	many	bits	as	are	needed	in	memory	for	the	numbers.	
	
I	have	not	met	any	other	reader	who	misunderstood	this,	and	then	attacked	it.	But	
here’s	the	fallacy,	and	it’s	a	‘willful	misunderstanding’	technique.	You	take	
something	I’d	written,	or	anybody	had	written,	and	misread	it	to	be	something	that’s	
clearly	a	false	statement,	and	then	you	attack	that,	even	though	it’s	not	what	I	said.	
So	as	I	read	through	this	38-page	document,	imagine…	38	pages	of	attacks	just	like	
this	one.	I	didn’t	say	that!	So	he’s	attacking	things	that	were	not	the	position	I	was	
taking	at	all.	
	

	 5	

I	want	to	go	over	a	classic	Kahan	
example,	the	area	of	a	triangle	that	
is	very,	very	skinny.	So	let’s	take	a	
triangle,	sides	a,	b,	and	c	where	c	is	
the	long	side,	and	a	and	b	are	just	
barely,	barely	more	than	half	the	
length	of	c.	So	it	pops	up	a	little	bit,	
like	buckled	concrete	in	the	sun.	
And	it’s	only	3	ULPs	larger,	and	
then	you’re	going	to	try	to	use	the	
formula,	the	classic	generic	formula,	
of	the	square	root	of	s,	s	minus	a,	s	
minus	b,	s	minus	c,	after	finding	the	
sum	a	plus	b	plus	c	over	two.	This	is	hazardous,	because	of	that:	
	
[points	to	the	(s	–	c)	term]	
	
s	and	c	are	very	close;	in	fact	they’re	only	six	ULPs	apart.	So	you’re	going	to	be	taking	
two	very	similar	numbers	and	subtracting,	not	necessarily	a	problem	if	it’s	exact.	
You	don’t	lose	any	information	if	those	two	are	properly	represented.	But	if	there’s	
any	problem	that	you	rounded	s	when	you	calculated	it,	that’s	going	to	amplify	the	
relative	error	in	a	massive	way.	
	
So	in	IEEE	quad	precision,	let’s	pull	out	all	the	stops	and	use	the	best	stuff	you	can	
get	right	now:	128	bits,	34	decimals.	We’ll	let	a	equal	b,	seven	halves,	and	add	three	
ULPs	where	an	ULP	is	two	to	the	negative	111th	power.	That’s	a	really	small	number.	
And	c	equals	exactly	seven.	And	just	to	make	it	a	little	bit	more	interesting,	let’s	say	
that	the	units	of	length	are	light-years.	So,	seven	light-years	away,	that’s	like,	Alpha	
Centauri	in	each	direction,	our	nearest	star.	Three	ULPs	is	1/200th	the	diameter	of	a	
proton.	Amazingly,	that	manages	to	pop	the	triangle	up	by	roughly	the	width	of	a	
standard	door,	85	centimeters.	So	finally	we	
have	a	number	we	can	kind	of	comprehend.	
And	that	area,	of	that	extremely	long	strip,	is	
about	55	times	the	area	of	the	earth.	It’s	
getting	almost	up	to	the	surface	area	of	one	
of	the	gas	giants,	like	Neptune.	
	
So	here	is	the	answer	correct	to	34	decimals,	
in	square	light-years.	Just	remember	the	
first	few	decimals,	please.	It’s	easy	to	
remember	3.14,	times	ten	to	the	minus	16th,	
square	light-years.	That’s	what	we	should	
get.	
	 	

	 6	

	
	
	
The	quad	precision	float	result	is,	it	gets	one	digit	right.	A	lot	of	work	for	one	digit!	
Three	point	six,	times	ten	to	the	minus	16th.	About	fifteen	percent	too	high.	That’s—

in	terms	of	ULPs,	that’s	250-some	peta-
ULPs.	The	result	does	not	admit	any	
error,	nor	bound	it.	It	gives	no	warning	
to	the	user.	You’re	expected	to	do	error	
analysis	to	figure	out	that	this	happened	
to	you	because	it’s	completely	silent.	
Nothing	protects	you	from	this	error.	
	
Professor	Kahan	suggests	that	you	sort	
the	sides	so	that	they’re	a	greater	than	b	
greater	than	c,	and	then	apply	this	
formula	which	is	algebraically	
equivalent.	I	would	love	to	know	how	

many	hours	it	took	him	to	find	that	formula.	Or	how	many	hours	it	would	take	you	to	
figure	out	that	formula.	
	
KAHAN:	Half	an	hour.	
	
GUSTAFSON:	Half	an	hour.	[laughter]	Half	an	hour	of	a	Berkeley	professor’s	time,	
conservatively	let’s	suppose	your	time	is	worth	three	hundred	dollars	an	hour,	it’s	
probably	more.	So	it	cost	about	one	hundred	and	fifty	dollars	to	get	that	formula	out,	
in	order	to	save	the	computer	from	having	to	do	a	little	bit	more	work.	That’s	now	
provably	within	eleven	ULPs	of	the	correct	area.	But	it	usually	takes	hours	to	figure	
out	that	kind	of	approach.	It	also	uses	twice	as	many	operations.	I	have	no	objection	
to	using	twice	as	many	operations;	we’ve	got	operations	to	burn,	but	that’s	not	the	
issue.	It’s	the	people	cost	of	the	approach.	It’s	the	wrong	direction.	We	need	to	make	
things	easier	for	users.	
	
Let’s	try	unum	arithmetic.	And	let’s	
make	sure	that	we’re	not	cheating,	so	
I’m	not	going	to	use	any	more	than	128	
bits,	period.	We	were	limited	on	the	
quads,	128	bits	per	number,	but	it	can	
adjust,	it	will	sometimes	use	less	than	
128	but	it	will	never	go	over.	The	
exponent	is	more	flexible.	It	can	go	
from	one	to	sixteen	bits,	so	I’ve	actually	
got	a	bigger	dynamic	range.	The	
fraction	can	be	one	to	128	bits,	plus	the	
hidden	bit.	That’s	higher	precision	than	
quad.	

	 7	

	
The	result	is	a	rigorous	bound,	accurate	to	31	decimals.	The	area	is	strictly	bounded	
by	those	two	numbers.	They	don’t	start	differing	(you	see	the	orange	over	there)	
until	the	32nd	decimal.	The	size	of	that	bound	is	a	square	about	eight	nanometers	on	
a	side,	so	we’re	getting	down	to	about	the	limits	of	present	lithography,	in	order	to	
find	the	error	in	finding	this	thing	that	has	55	times	the	area	of	the	planet	Earth.	
	
OK,	so	in	summary,	let’s	take	a	look	at	quad-precision	IEEE	floats	versus	unums,	also	
128	bits.	The	dynamic	range	is	almost	the	square	of	what	you	get	with	quad-
precision	floats.	Instead	of	34	decimals,	I	could	have	up	to	38.8.	And	then,	trying	it	

on	the	triangle,	I	used	an	
average	of	90	bits;	they	
shrink.	And	the	result	is,	the	
float	result	says,	area	exactly	
equals	this	wrong	number,	
versus	unums	that	say	the	
answer	is	definitely	
between	these	two	numbers,	
provably.	The	type	of	
information	loss	in	the	case	
of	floats	is	invisible	error,	
very	hard	to	debug.	When	I	
actually	did	this	example,	I	
used	unums	to	do	the	quad.	
I	just	set	the	exponent	to	the	

right	size	and	the	fraction	to	the	right	size,	and	simulated	it	with	my	environment.	
And	at	the	point	where	you	get	the	rounding	error,	where	suddenly	six	ULPs	
becomes	eight	ULPs,	it’s	instantly	visible.	It	was	so	easy	to	spot.	There	was	no	
problem.	Whereas	I	think	if	it	just	keeps	cranking	away,	always	giving	what	looks	
like	34	decimals	of	precision,	you’re	going	to	have	to	walk	through	it,	one	step	at	a	
time,	very	laboriously,	so	by	having	more	information,	it	makes	it	easier	to	debug	
and	figure	out	what’s	going	on	in	your	computation.	
	
Here’s	another	example	of,	“Well,	
just	re-write	the	code	this	way.”	
Now	I	did	an	example	just	to	
show	how	the	rounding	error	
might	not	be	random,	and	also	
how	the	system	could	
automatically	adjust	to	give	you	
higher	accuracy	and	self-manage	
accuracy.	The	simplest	example	I	
could	think	of	was	just,	count	to	a	
billion.	Just	keep	on	adding	one,	
adding	one,	adding	one,	a	billion	
times,	and	see	how	you	do	with	

	 8	

floating-point	arithmetic.	Floating	point,	floats,	of	course,	can	represent	the	number	
one	billion,	but	they	will	get	stuck,	as	we	heard	in	an	earlier	talk.	In	trying	to	count	
to	a	billion,	IEEE	floats	get	stuck	at	two	to	the	24th,	sixteen	million	some.	They	can’t	
get	any	higher	because	as	you	add	one,	it	keeps	on	rounding	down.	Ah,	well,	this	is	a	
well-known	problem,	and	Dr.	Kahan	says	in	his	big	write-up:	
	
“Compensated	summation	will	be	illustrated	by	application	to	a	silly	sum	Gustafson	
uses	on	page	120	to	justify	what	unums	do	as	intervals	do,	namely,	convey	
numerical	uncertainty	via	their	widths.”	
	
I	don’t	think	that’s	silly	at	all.	I	like	to	know	when	something	has	suddenly	lost	its	
ability	to	give	me	a	precise	answer.	And	that’s	actually	not	what	this	section	was	
about.	But	let’s	try	it.	
So.	This	is	a	screen	
shot	from	Kahan’s	
paper.	With	n	equal	to	
ten	to	the	ninth,	
compensated	
summation,	all	in	
floats.	Set	the	sum.	
Now	you’ve	
introduced	two	new	
variables:	oldsum,	
and	compensation,	
and	you	keep	track	of	
this.	Your	summation	
in	a	program	often	
will	be	scattered	all	
over	the	program,	so	
for	every	sum	you’re	accumulating	you’re	going	to	have	to	keep	two	auxiliary	
variables	like	this	and	keep	track	of	them.	What	do	suppose	this	does	for	the	
maintainability	of	the	code?	And	the	portability?	And	the	chance	that	you	might	
have	made	a	bug	somewhere,	maybe	an	error?	I’d	say	it	goes	sky	high.	
	

So	I	coded	it	up	in	Mathematica,	exactly	as	you	see	here;	
it’s	a	slight	translation	from	C,	from	whatever	pidgin	
language	that	is	to	Mathematica,	but	I	think	it	is	exactly	
what	you	see.	And	I	summed	from	one	to	ten.	I	got	the	
number	2036.	I	tried	adding	one	plus	one.	It	gave	me	four	
[pained	expression].	I	tried	going	all	the	way	to	a	billion.	
NaN.	I	think	sum	minus	oldsum	is	infinity	minus	infinity,	
and	it	said,	not	a	number.	
	
What	is	going	on?	This	is	a	FAIL.	He	got	an	error	when	he	
coded	it	up!	And	he	put	it	right	there,	in	the	code,	in	the	
text.	So	even	Kahan	didn’t	get	it	right.	In	rewriting	code	

	 9	

to	try	to	compensate	for	these	things,	and	say,	“Let’s	just	rearrange	all	this	stuff”	is	
very	error-prone.	It	also	makes	your	code	completely	cryptic	to	anyone	trying	to	
understand	“what	are	you	doing?”	They	won’t	be	able	to	see	it.	Plus,	it	gets	huge,	
potentially	huge	mistakes.	So	an	approach	that	uses	more	coding	effort	and	three	
times	as	many	bits	to	produce	a	wildly	wrong	answer	does	not	impress	me.	
	
Examples	like	this	need	to	be	tested,	not	merely	asserted.	He	says,	“Sum	equals	ten	
to	the	ninth,	exactly!”	No,	it’s	not.	I	wonder	how	many	other	things	he	says,	“This	is	
true,	for	this	formula.”	
	
When	I	wrote	the	book,	I	did	not	use	a	word	processor.	I	used	Mathematica	to	
generate	the	book	as	a	computer	program.	All	the	examples,	therefore,	are	computed	
output.	So	any	mistake	I	would	make	would	be,	like,	transcribing	a	result	
somewhere	into	the	comment	field.	I	might	make	a	mistake	doing	that,	but	other	
than	that,	it’s	all	pretty	much	bombproof.	
	
Now	I	had	a—one	of	my	
favorite	examples	from	Kahan,	
is,	I	call	it	his	“monster,”	and	
that’s	meant	as	a	flattering	
term	because	I	think	it’s	a	
really	clever	example.	But	it’s	
a	very	tough	one	for	floats.	
There’s	three	functions,	T,	Q,	
and	V,	I	got	the	letters	right	
this	time,	I	think,	and	Q	is,	
should	be	identically	zero.	But	
floats	can’t	do	the	square	
roots	and	reciprocals	exactly,	
so	they	tend	to	get	a	little	slop.	
You	square	that	number	in	the	
bottom	function,	G,	and	that	means	you’re	going	to	get	something	a	little	bit	bigger	
than	zero.	And	then	you	use	the	removable	singularity	function	e	to	the	z	minus	one	
all	over	z,	and	floats	will	tend	to	get	zero	most	of	the	time.	They	might	get	lucky	and	
actually	get	one,	which	is	the	correct	answer.	
	
OK.	So	when	I	coded	this	up,	I	used	the	approximately-equals	sign,	which	actually	
means	intersects,	so	if	a	unum	interval	intersects	zero,	then	that’s	the	wobbly	“not	
nowhere	equal”	sign.	I	didn’t	use	exact	equality,	there,	shown	in	bright	blue,	just	the	
way	he	showed	it	in	bright	blue	because	he	wanted	to	emphasize	that	I	was	cheating.	
So	he	got	bent	out	of	shape	by	that,	so	I	coded	it	up	with	an	equals	sign,	and	you	can	
see	it	right	there:	If	z	equals	zero,	one;	else	e	to	the	z	minus	1	over	z.	I	don’t	know	
how	more	direct	I	could	code	exactly	what	he	wanted	as	his	example	problem.	The	
other	three	lines	are	just	putting	it	in	unum	form,	as	unum	operations.	
	

	 10	

Here’s	the	result.	Instead	of	
getting	exactly	1,	I	got	1	plus	
an	ULP.	I’m	showing	you	the	
first	nine	and	the	last	nine,	
but	it’s	all	very	boring.	The	
list	of	all	ten	thousand	
numbers	is	all	exactly	one,	
and	an	ULP.	And	they’re	all	
of	the	form	one	plus	epsilon,	
and	this	is	a	half-open	
interval.	It	includes	the	
number	one,	and	is	a	little	
big	bigger,	goes	a	little	bit	to	
the	right,	but	it’s	never	zero.	
It	never	makes	that	mistake.	

	
Now	he	would	have	found	that	out	if	he’d	tried	it.	He	has	access	to	all	my	code	at	his	
fingertips,	as	do	all	of	you;	it’s	a	free	download.	Just	go	to	the	CRC	publication	site	
and	use	it.	Or	if	you	get	it	in	Julia,	or—there’s	about	five	versions	of	unum	arithmetic	
now	in	Julia	on	the	web,	and	one	in	Python	that’s	a	line-by-line	transcription	of	the	
prototype,	C	versions	are	popping	up	everywhere,	C++…	it	won’t	be	long	before,	
name	your	language,	it’s	going	to	have	some	unum	support	from	somebody.	So	I	
don’t	know	why	he	didn’t	just	try	these	things	and	he	just	said,	“That’s	not	gonna	
work.”	He	speculated	that	it	would	fail.	
	
So	he	made	one	up,	and	I	feel	so	honored	that	I’ve	earned	my	first,	targeted,	“This	
will	BREAK	unums!”	from	Dr.	Kahan.	What	he	did	was,	he	added	on	a	number,	ten	to	
the	negative	300th	power,	all	raised	to	the	power	of	ten	thousand,	times	x	plus	1,	
which	could	be	as	large—or	I	
should	say	as	small	as—ten	to	the	
negative	thirty	billion.	So	I’m	very	
flattered	that	he	thought	it	would	
take	a	number	like	ten	to	the	
negative	thirty	billion	to	break	
unum	arithmetic.	Or	at	least	slow	
it	down,	so	it	would	take	an	
intractable	amount	of	time.	
“What,	if	anything,	does	unum	
computing	get	for	this?	How	long	
does	it	take?	It	cannot	be	soon	nor	
simply	1.0.”	
	
Wanna	bet?	
	

	 11	

It	had	absolutely	no	trouble	handling	this,	and	it	didn’t	slow	it	down	one	bit.	For	a	
very	simple	reason:	What	he	called—that	very	small	number—is	immediately	

turned	into…	the	unum	zero	to	epsilon.	Open	interval.	It’s	
not	zero,	it’s	too	small	to	represent.	This	is	the	way	unums	
handle	what	normally	would	become	underflow.	They	don’t	
underflow.	They	don’t	overflow,	and	they	don’t	round.		
They	just	say,	“It’s	in	that	interval,	zero	to	epsilon,	and	I	will	
keep	track	of	it	that	way.”	You	want	to	exponentiate	it?	Fine.		
Once	again,	it	evaluates	to	one	(gestures	the	start	of	an	
interval),	to	one	plus	epsilon	(gestures	the	end	of	an	
interval).	It	didn’t	go	any	slower.	It	didn’t	require	high	
precision.	It—I	guess	you	could	say	it	just	gave	up.	It	didn’t	
even	attempt	to	represent	this	number.	And	Dr.	Kahan	
referred	to	it	as	an	“infinitesimal,”	which	I	think	is	a	strange	
use	of	the	word	“infinitesimal”	since	it’s	clearly	a	number	

and	not	an	infinitesimal.	Anyway.	
	
Here’s	what	I	call	“An	Inconvenient	Infinity.”	And	I	just	was	finding	a	very	simple	
example—as	I	say,	this	is	a	very	broad	audience	book,	so	I	said	what’s	the	area	of	a	
circle?	Let’s	give	it	an	arc	of	a	circle,	multiply	by	four	and	see	how	close	to	pi	we	can	
get	with	one-decimal	precision,	with	very,	very	crude	limits.	So,	if	you	divide—if	you	
pick	a	point	on	the	left,	it	will	kind	of	like	a	burning	fuse	move	over	to	the	right	and	
enclose	the	gap	of	what	evaluates	to	x	squared	plus	y	squared	equals	one.	All	you	
have	to	know	is	how	to	
multiply	and	add	and	test	for	
equality	with	one.	The	error	
tends	to	be	one	over	n,	and	it’s	
a	rigorous	bound.	This	works	
on	any	continuous	function.	It	
doesn’t	care;	in	fact,	with	
slight	modification,	it	can	even	
work	on	discontinuous	
functions.	So	I	was	looking	for	
generality,	not	for	“How	tight	
can	I	make	the	bound.”	
	
So	here	is	one	of	the	things	
that	Kahan	wrote	up	in	his	
attack	on	my	book.	He	mentioned	that	the	midpoint	rule	has	an	error	term	
associated	with	it,	the	trapezoidal	rule	has	an	error	associated	with	it,	and	if	you	use	
those	two	together,	you	can	put	a	quote,	bound,	about	the	numerical	evaluation	of	
integrals.	Pretty	good!	It	does	require	that	the	second	derivative	exist	and	be	
bounded	throughout.	And	as	I	read	through	his	write-up,	he	mentioned	several	
times	that	f-prime-prime	is	bounded	throughout.	And	then	he	sort	of	noticed	that…	
it’s	not.	It’s	not	bounded.	For	the	quarter	circle,	it	goes	to	infinity.	
	

	 12	

To	my	astonishment,	he	used	the	formula	anyway.	
He	used	the	bounds,	ignoring	the	fact	that	his		
“this	bound,	plus	infinity,	is	less	than…”	You	can’t	
do	that!	If	my	students	do	something	like	this,	I	
take	off	at	least	half	points	on	the	test.	There	were	
very	clear	conditions	for	this	theorem	to	work.	
And	he	ignored	them	because	he	wanted	a	nice,	
tight	bound.	
	
He	also	said	that	my	method	is	order	n	squared,	
which	I	think,	if	you	just	look	at	the	method,	you	

can	see	that	it’s	not	order	n	squared.	I	do	give	an	earlier	method	which	populates	all	
the	squares	underneath,	and	quickly	say,	“That’s	not	the	right	way	to	do	it;	you	do	it	
this	way”	but	he	still	stuck	with	“Oh,	that’s	a	really	slow	way!”	It	would	be	very,	very	
slow	just	to	fill	in	all	the	squares.	
	
There’s	too	many	mistakes	to	really	cover	here,	but	perhaps	the	biggest	one	is	he	
says,	“The	book	claims	it	ends	all	error.”	It	does	nothing	of	the	kind.	It	says	it	ends	a	
specific	kind	of	error.	It’s	the	error	of	rounding	and	sampling.	Always	substituting	a	
specific	exact	number	when	you	really	wanted	something	different.	
	
And	he	says,	“Unums	are	tarted	intervals.”	Well,	unums	subsume	floats	and	intervals.	
You	can	use	them	to	be	floating	point	numbers;	you	can	use	them	to	be	interval	
numbers…	This	is	a	whole	environment.	It’s	not	just	a	number	format.	It’s	a	set	of	
rules	for	how	to	use	them	as	well.	What	you	can	do	in	the	scratch	pad,	for	example;	
that’s	what	gives	you	bitwise	compatible	answers.	But	you	know,	“tarted”	means,	
like,	too	much	lipstick,	and	makeup,	and	things	like	that?	And	when	I	look	at	these	
34-digit	numbers	that	claim	to	have	all	this	precision,	and	only	one	of	them	is	
correct,	I	think	that’s	the	one	that	looks	like	it’s	wearing	too	much	makeup.	You	see,	
unums	admit	what	they	don’t	know,	whereas	floats	always	claim	all	this	precision,	
which	might	not	be	true!		
	
“Gustafson	regards	calculus	as	
evil.	He	is	not	joking!”	I	was	
amazed,	because	I	used	a	
raccoon	meme	that	says	
DIYLOL	on	it.	I	don’t	know	how	
anyone	could	know	that	I’m	
not	joking.	“I’ve	invented	
something	evil.	I	will	call	it	
calculus.”	I	think	most	people	
would	laugh	when	they	see	
this,	and	that	was	my	intent.	I	
was	trying	to	make	the	point	
that	people	tend	to	confuse	
when	they	are	calculating,	and	

	 13	

when	they’re	using	calculus,	and	they	get	in	a	lot	of	trouble	doing	that.	There’s	a	lot	
of	problems	that	can	be	solved,	without	using	calculus.	I	wanted	to	kind	of	push	the	
limits:	How	far	can	we	go	without	requiring	calculus?	…Anyway.	
	

I	would	say	in	a	few	places	that	grade	school	math	would	
suffice.	And	you	say,	“That’s	not	grade	school!	That’s	
trigonometry!”	And,	well,	12th	grade	is	a	grade.	[chuckling	
sounds]	11th	grade	is	a	grade.	That’s	why	they’re	called…	
grades.	If	I	meant	elementary	school,	I	would	have	said	
elementary	school.	This	is	not	a	book	with	elementary	
school	math.	
	
“Unums	will	cost	thousands	of	extra	transistors!”	…Really?	
Which	will	cost	thousandths	of	a	penny?	This	is	2016;	this	
is	not	1985.	A	thousand	transistors	will	cost	you	roughly	
one	one-hundredth	of	a	cent.	Right	now.	And	it’s	getting	
cheaper,	still.	
	
“His	approach	is	very	inefficient.	Here’s	a	faster	one	that	
usually	works.”	How	many	times	have	I	heard	that.	I	am	so	

tired	of	methods	that	“usually”	work,	and	require	an	expert	to	tell	you	when	they	do	
work	and	when	they	don’t	work.	I’m	interested	in	very	robust	methods	that	you	can	
hand	to	people	who	are	not	experts,	that	work	every	time,	even	if	it’s	slowly.	
	
“Gustafson	suffers	from	a	
misconception	about	floating	
point	shared	by	von	Neumann.”	
It	pleases	me	no	end	to	share	
misconceptions	with	John	von	
Neumann.	One	of	the	
misconceptions	he	was	talking	
about	is	actually,	von	Neumann	
was	concerned	that	if	you	hand	
floating-point	hardware	to	
people,	they	would	misuse	it;	
they	would	just	use	it	blindly,	
without	doing	proper	error	
analysis,	and	they	would	get	in	
trouble,	because	they’d	get	wrong	answers	and	they	wouldn’t	know	it.	That’s	my	
“misconception.”	I	think	it’s	perfectly	accurate.	
	 	

	 14	

	
	

	
	
	
Let	me	just	give	you	some	memes.	That	was	
computers	then.	1980s.	Remember	those	
days?		
	
	
	
	
	
	
	
	
	
	
	
This	is	computers	now.	A	thousand	times	
cheaper.	A	thousand	times	faster.	
	
	
	
	
	
	
	
	
	
	
Here’s	what	arithmetic	looked	like	back	then.	
Single,	double,	extended.	
	
	
	
	
Here’s	what	arithmetic	looks	like	now.	
	
Do	you	see	my	point?	Isn’t	it	time	to	do	
something	about	floating-point	arithmetic?	
Maybe	not	what	I	did,	but	something	to	
improve	the	quality?	With	a	million	times	as	
much	power	at	our	fingertips,	why	can’t	we	
do	something	to	make	things	a	little	less	
painful	for	people?	

	 15	

	
The	biggest	blind	spot	of	all	in	
the	entire	38	pages	of	criticism	
he’s	levied—and	watch	for	this	
when	he	speaks,	because	I	hope	
he	doesn’t	make	it	now.	I	say	
several	times:	“Remember:	
There	is	nothing	floats	can	do	
that	unums	cannot.”	They	are	
perfectly	capable	of	mimicking	
every	float	that	there	is,	all	the	
IEEE	floats,	and	all	the	sizes	in	
between.	That’s	just	special	
cases	of	IEEE	floats.	It’s	the	last	
line	because	I	wanted	to	make	
sure	people	saw	that.	There’s	a	chapter	dedicated	to	this,	called	“Permission	to	
Guess.”	Because	what	you	do	with	unums	is,	you	explicitly	ask	for	a	round	operation.	
It	doesn’t	happen	every	time.	
	
So,	you	don’t	have	to	throw	away	all	these	great	float	algorithms	that	we’ve	built	up	
over	the	decades.	I’m	not	saying	we	should.	There	are	many	things	that,	well,	quite	a	
few	things	you	can	find,	where	a	floating-point	algorithm	is	perfectly	stable.	It	works,	
it’s	got	a	solid	base	of	theory	behind	it,	and	there’s	absolutely	no	reason	to	use	
unums,	in	fact	unums	may	complicate	things	to	the	point	where	you	really	wish	you	
didn’t	use	them.	Then	just	use	the	unum	as	a	float.	It’s	a	superset.	
	
When	you	request	rounding,	it’s	very	much	more	honest	than	when	it	happens	every	
time	without	you	being	under	control.	Unums	end	the	error	of	mandatory,	invisible	
substitution	of	incorrect	exact	answers	for	correct	answers.	It	gives	you	back	the	
control	over	what’s	going	on	in	the	calculation,	and	makes	it	so	visible,	that	you	have	
a	much	better	chance	of	knowing	what	went	wrong,	if	something	goes	wrong	with	
your	calculation.	It’s	easier	to	debug.	Far	easier.	
	
Float	methods	are	an	especially	good	way	to	deal	with	“the	curse	of	high	
dimensions.”	If	you	aren’t	careful,	you	do	get	kind	of	a	two-to-the-nth	effect	when	
you’re	trying	to	solve	something	that	has	n	degrees	of	freedom,	whereas	maybe	with	
a	float	method,	like	Gaussian	elimination,	that	solves	the	equations	with	order	n	
cubed.	You	can	use	that	to	get	a	first	guess,	and	if	you	want	to	do	more	with	it	using	
unums,	you	have	that	option.	If	not,	you’ve	got	way	more	flexibility	in	the	precision	
and	the	dynamic	range	than	you’ve	ever	had	with	IEEE	floats.	
	
AUDIENCE	MEMBER:	Sorry,	do	you	mean	float	or	unum	methods?	
	
GUSTAFSON:	Did	I	say	something	wrong?	Float	methods,	in	other	words	take	a	
method	that	exists	as	a	float	method;	use	the	unums	to	do	the	float	method.	Use	that	
algorithm.	Use	that	numerical	method.	Like,	Gaussian	elimination	does	not	work	

	 16	

well	with	intervals.	Bad	idea,	OK?	It	just	explodes;	you	
get	a	huge	bound	and	it’s	not	useful.	
	
But	I	did	mean	float	methods,	here.	So,	use	unums	to	
perform	float	numerical	methods.		
	
	
	
	
	

	
	
As	I	look	through	these	pages,	I	see	
things	that	you	normally	do	not	find	in	
a	math	review.	And	I	know	invective	
worked	for	Donald	Trump	[laughter],	
but	is	this	really	the	right	way	to	
discuss…	mathematics?	
	
	
	
	
Every	time	anyone	poses,	seriously,	“Let’s	do	something	about	floating	point,”	
there’s	this	thing,	that—in	my	head	I	
envision	it	this	way.	“The	Lord	of	the	
Reals…	Does	NOT	Share	Power.”	
[laughter]	Pretty	soon	the	blogs	are,	
you	know,	darting	out	saying	“That’s	
wrong!”	“That	will	never	work!”	
	
I’ll	leave	you	with	that	and…	Dr.	
Kahan?	It’s	all	yours.	[applause]	
	
KAHAN:	Well,	while	you’re	up	getting	
my	slides	up,	what	John	has	done	here	
is	to	take	examples,	out	of	their	context,	
starting	with	the	triangle.	The	flat	triangle	is	not	the	issue.	The	idea	was	to	show	
that	floating	point	will	get	results	that	are	excessively	wrong	compared	with	the	
condition	of	the	problem.	And	so	if	he	had	chosen	to	set	up	a	different	triangle,	then	
we	could	have	asked	the	question,	well,	how	does	your	answer’s	error	vary	with	the	
uncertainty	in	the	data?	Suppose	the	data’s	uncertain	by	a	unit	in	the	last	place?	
Well,	it	turns	out	that	for	that	flat	triangle,	the	uncertainties	are	outright.	For	a	
different	triangle,	you	get	the	same	horrible	uncertainty	from	Heron’s	Rule,	but	it’s	
not	deserved.	In	other	words,	you	can’t	tell	with	ordinary	floating-point	arithmetic	
unless	you	do	an	error	analysis,	whether	what	you’re	getting	is	deserved,	or	not.	
And	what	John	is	saying,	in	effect,	is	“You	don’t	have	to	do	an	error	analysis!	You	just	

	 17	

have	to	use	unums!”	Well,	I’ll	
answer	the	other	issues	that	
John	raised	on	our	time,	but	
my	time	I’m	going	to	use	for	
something	else.	Let’s	
observe—	(audience	clamors	
for	him	to	use	microphone)		
	
DEMMEL:	Are	you	wearing	a	
microphone?	
	
KAHAN:	Say	again?	
	
DEMMEL:	You	need	to	use	the	
microphone.	
	
KAHAN:	Do	I	need	a	microphone?	[audience	shouts	yes]	
It’s	OK,	I’ll	use	this	one.	It’s	not	a	problem.	If	I	can	just	
get	it	turned	on.	[audience	chuckling]	Now.	Is	it	
working	now?	
	
DEMMEL:	Hold	it	up.	
	
KAHAN:	Do	I	have	to	hold	it	here?	
	
DEMMEL:	Yeah,	that’s	good.	
	
KAHAN:	That’s	fine.	Let’s,	let’s	observe,	and	you	can	read	this	at	your	leisure	after	
it’s	posted,	on	my	web	page.	And	if	you’ll	go	to	the	next	page	please.		

	
The	detailed	critiques	are	
here,	so	you	can	see	
whether	John	has	
represented,	or	
misrepresented,	the	
criticisms	that	I’ve	levied.	
You	can	read	it	for	
yourself,	but	these	are	
the	documents	that	we	
exchanged.	Those	are	
John’s	documents,	and	
then	I	explained	we	
exchanged	the	first	drafts	
of	these	documents.	Let’s	
go	on	to	the	next	page	
now.	

	 18	

	
	
Here’s	the	issue:	It	
takes	a	long	time	to	
correct	a	mistake.	And	
in	any	event,	the	
arithmetic	is	a	small	
part	of	the	issues	that	
we	have	to	face.	Let’s	go	
onto	the	next	page,	
please.	
	
	
	
	
	

	
First	of	all,	what	are	unums?	
Well,	I	said	they’re	tarted	
intervals.	And	so	they	are.	
Floating	point	numbers,	each	
has	its	own	width,	range,	and	
precision,	you	can	vary	them	
as	much	as	you	like.	Each	is	
tagged	to	show	if	it’s	uncertain	
or	not.	Usually	you	use	them	
in	pairs,	because	they’re	
endpoints	of	intervals.	So	they	
make	up	and	are	included	in	
the	interval.	And	they’re	
alleged	to	save	storage	space.	
Ah!	That’s	going	to	be	the	
critical	issue.	Do	they	really	

save	storage	space?	And	ideally,	the	
widths	would	vary	automatically.	Of	
course,	that	would	happen	with	
interval	arithmetic	if	we	could	get	it,	
with	varying	precision.	But	the	people	
who	are	trying	to	standardize	interval	
arithmetic	say	they	have	enough	
trouble	grandfathering	in	old	schemes	
so	they	aren’t	interested	in	that.	

	
But	about	SORNs.	SORNs	don’t	have	variable	precision;	you’ve	got	to	commit	
yourself.	They	are	finite	collections	of	extended	real	numbers;	that	means	they	
include	infinity.	They	allow	open	intervals.	They’re	also	serve	in	pairs.	And	they	

	 19	

typically	save	storage	space	because	what	you’re	manipulating	are	not	the	numbers,	
but	pointers	to	the	values.	And	so,	it’s	possible	to	run	this	arithmetic	very,	very	fast.	
Now,	both	schemes	are	typically	produced	with	massive	parallelism.	And	when	we	
look	at	this	we’ll	see	how	massively	parallelism	they	have	to	be.	Next,	please.	
	

The	issue	here,	is…	not	so	
much	whether	they	would	be	
worthwhile,	if	what	John	says	
were	true.	They	would	be!	It	
would	be	lovely	to	be	able	to	
get	away	from	error	analysis.	I	
would	rather	do	something	
interesting.	[laughter]	But	they	
can’t.	And	it’s	possible	to	prove	
it	from	fundamentals.	However	
I’d	rather	not	bore	you	with	
fundamentals;	I’ll	try	to	give	
you	counterexamples.	Let’s	go	
to	the	next	page.	
	

What	are	the	extravagant	
claims?	Well,	he	says	you	
don’t	have	to	have	an	
understanding	of	difficult	
mathematical	analysis;	in	
particular,	the	
discretization	of	the	
continuum,	when	you	
solve	a	differential	
equation.	You	don’t	really	
have	to	understand	
what’s	involved	here,	you	
don’t	have	to	worry	about	
underestimating	the	
uncertainty	in	your	data,	
and	you	don’t	have	to	
worry	about	roundoff.	
Well,	now	that’s	
interesting,	but	is	it	true.	None	of	that	is	true.	Now,	SORN	computations,	they	have	a	
different	system.	And,	unums,	and	SORNs,	are	not	independent	of	the	dependency	
problem	of	interval	arithmetic,	nor	of	the	wrapping	effect,	although	John	does	claim	
they	are.	He	claims	all	the	error	goes	away	and	that’s	not	quite	true.	As	you’ll	see.	
	
He	claims	that	calculus	is	evil,	OK,	so	he’s	got	a	funny	cartoon.	But	he	really	does	
disparage	it!	He	says	you	don’t	have	to	know	it	to	solve	differential	equations.	He	

	 20	

says	you	don’t	have	to	know	modern	numerical	analysis	in	order	to	do	error	
analysis.	That’s	what	he	says	in	his	book.	You	can	read	it	for	yourself!	
	
And	here	we’ve	got	a	problem	here	with	diagnostics.	“A	plethora	of	NaNs”	he	says,	
for	instance.	We’ve	got	too	many	NaNs.	He	doesn’t	know	what	they’re	for,	I	guess.	
And,	“Flags:	Inaccessible	from	most	programming	languages	and	they	just	annoy	
people.”	Although	if	they’re	inaccessible,	and	you	can’t	use	them,	why	would	they	be	
annoying?	
	
GUSTAFSON:	Because	they’re	slow.	
	
KAHAN:	Well,	there’s	nothing	slow	about	them.	But	directed	roundings,	well,	you’re	
going	to	have	to	worry	about	those	because	unums	and	SORNs	don’t	have	directed	
roundings.	There’s	the	trouble.	And	that’s	what	we	have	to	combat.	Let’s	look	at	the	
next	page.	
	

“Can	we	be	Liberated	from	
Error-Analysis?”	Well,	in	
order	to	understand	the	issues,	
we	have	to	look	at	the	process.	
First	you	choose	an	algorithm.	
You	express	it	in	a	
mathematical	language,	and	
you	prove	that	it	would	work	
if	you	did	it	in	ideal	arithmetic	
or	arithmetic	with	unlimited	
precision.	Then	you	translate	
it	faithfully	into	a	
programming,	some	
programming	language.	Then	
you	execute	the	program	and	
you	get	a	result.	Now,	these	
three	things	are	different:	The	

result,	R,	might	not	be	accurate	enough.	You	have	to	cope	with	that.	And	usually	it	is.	
But,	often	it	isn’t.	So	there’s	this	question:	If	P’s	arithmetic	is	floating	point	but	of	a	
precision,	do	we	have	an	error	analysis,	to	determine	for	sure,	if	the	program	P	
implements	the	algorithm,	accurately	enough,	and	the	answer	is,	maybe	you	do,	and	
maybe	you	don’t.	And,	if	you	do,	it	may	cost	you	a	fortune!	First,	to	find	it…	you	have	
to	pay	some	PhD	guy	for	quite	a	while	to	look	for	it,	and	then	if	he	finds	it,	it	might	
cost	you	a	fortune	to	compute	that	error	bound.	
	
So	that’s	why	people	are	unhappy	about	floating-point	arithmetic.	And	if	your	
arithmetic	did	away	with	that,	wouldn’t	that	be	lovely?	But	it	doesn’t.	Next	page	
please.	
	

	 21	

We’re	going	to	be	
disappointed.	We’re	going	to	
be	disappointed,	because,	
when	we	affect	the	
discrimination	upon	the	
function	we	want	to	compute,	
straight	F,	and	the	algorithm	
we	hope	to	compute	it,	it	
could	be	a	formula,	curly	F,	
and	then	we	have	big	F	which	
is	the	program,	they’re	all…	
different.	When	you	execute	
this	program	in	ordinary	
floating	point,	it	could	be	
arbitrarily	wrong	sometimes	
for	all	we	know.	But	I’m	in	
error	analysis,	and	of	course	

what	we’d	like	to	do	is	something	about	that.	And	what	John	has	in	mind,	is	to	use	
unums.	But	there	are	other	ways	to	deal	with	this	problem,	which	I’ll	get	to	later.	In	
fact,	they	were	even	mentioned	at	this	conference	yesterday.	
	
Now	what	about	SORN	and	unum	interval	
arithmetic?	Well,	the	problem	there	is	that	F	can	be	
an	interval,	that	although	encloses	the	ideal	
mathematical	value,	it	can	be	awfully	big.	And	if	it	is	
terribly	big,	too	often,	then	you	won’t	do	it.	If	the	
big	width	is	due	to	roundoff,	there’s	something	you	
can	do	about	it;	you	re-do	the	computation	with	
appropriately	higher	precision.	Of	course	that	
means	you	have	to	have	interval	arithmetic	with	
variable	precision.	Well,	good	luck	finding	that!	
	
Unum	computation	lets	the	precision	be	increased	by	the	programmer.	And	often,	it	
works.	If	the	big	width	is	due	to	uncertain	data,	now	you	have	a	different	problem.	
And	what	you	have	to	do	is	break	up	the	data	into	small	subregions,	and	replace	F	
evaluated	once	over	a	block	of	data	by	the	union	of	all	the	intervals,	F	with	little	x	in	
here.	And	often	the	union	is	smaller.	That	often	works.	The	trouble	is,	they	don’t	
always	work.	That’s	the	issue.	If	they	always	worked,	we	could	celebrate.	But	they	
don’t.	Next	please.	
	
So	here	are	a	couple	of	failure	modes.	How	can	increasing	the	precision	of	unums	
fail	to	overcome	roundoff?	Well,	it	can.	There	are	examples;	the	trouble	is,	they’re	so	
subtle,	and	I’ll	explain	them	only	in	the	question	period.	It	takes	too	much	time,	now.		
What	about	this	“union”	issue?	How	can	the	union	of	F	as	small	intervals	fail	to	be	
smaller	than	the	overside	F?	Well,	here’s	a	simple	example.	This	is	a	rational	
function,	which	has	two	expressions.	This	expression	and	that	expression	are	the	

	 22	

same	rational	functions	in	the	field	
of	rational	functions.	Well,	why	
would	you	use	this	one?	It’s	more	
accurate	when	x	and	y	have	
approximately	equal	magnitudes.	
Why	would	you	use	that	one?	It’s	a	
better	choice	when	x	and	y	are	
sensitive	to	over	or	underflow	that	
might	threaten	you,	so	you	might	
you	one	here	and	another	one	
there	in	your	program.		
	
Next	look	at	the	open	square.	It	
turns	out,	with	both	the	SORN	and	
unum	arithmetic,	you	can	

represent	open	intervals.	So,	this	square	is	representable.	And	now,	if	you	subdivide	
it	into	little	bits,	no	matter	how	tiny	they	are,	you’ll	always	find	that	the	union	of	the	
regions	with	little	bits	is	always	this	interval.	Whereas	the	correct	way	to	size	it	
except	for	a	misprint;	those	should	be	round	parentheses,	it	should	be	open	interval,	
not	closed.	That’s	what	this	thing	reminds	me	of.	
	
So,	the	trouble	is,	that	if	you	don’t	use	the	right	expression,	you	may	end	up	with	
terribly	wide	intervals.	And	that	can	happen	to	unums,	and	to	intervals,	and	to	
SORNs.	Next,	please.	
	
Well,	how	often	does	
something	this	bad	happen?	
Well,	it’s	an	instance	of	the	
dependency	problem.	The	
interval	arithmetic	people	
know	about	this.	The	book’s	
chapters	claim	that	they	
overcome	this	problem.	And,	
and	the	documents	about	
SORNs	claim	they	have	no	
dependency	problem.	Those	
are	their	pages.	Well,	it	turns	
out	that	this	isn’t	quite	true.	
	
Now	remember,	you	want	
straight	F,	that’s	what	you	
want	to	compute,	but	you’re	going	to	use	an	algorithm	curly	f,	and	you’re	going	to	
write	a	program,	called	big	F,	and	the	trouble	is	that	big	F	may	be	perfectly	happy	
with	floating-point	numbers.	It	just	misbehaves	when	you	use	intervals.	That’s	what	
happened,	to	our—	and	on	the	previous	page.	I	don’t	know	how	you	ever	figure	this	
out	if	you	didn’t	have	an	alternative	way	of	doing	the	computation.		

	 23	

	
But	there’s	another	theorem	or	mode.	You	see,	it’s	possible	that	the	algorithm	you	
chose,	although	it	would,	in	infinite	precision,	compute	the	right	function,	straight	F,	
the	algorithm	you	chose	gave	you	a	really	bad	way	to	compute	what	you	want,	if	you	
have	rounding	errors.	And	that	really	could	no	matter	how	this	is	programmed,	
interval	arithmetic	notwithstanding.	And	there’s	an	example.	The	incenter	of	a	
tetrahedron	is	the	center	of	the	biggest	sphere	that	fits	in	the	tetrahedron.	And	no	
matter	how	you	program	the	function,	unums,	intervals,	whatever	you	like,	as	the	
volume	of	a	tetrahedron	shrinks,	the	value	you	compute	goes	off	to	infinity.	And	this	
example	is	in	some	of	my	notes,	and	it’s	also	in	one	of	the	pages	put	up	of	the	
documents	that	I	told	you	about.		
	
Another	place	things	going	wrong	is	that	curly	f	may	be	the	solution	of	an	equation.	
Now,	this	equation	may	be	satisfied	by	the	ideal	function,	that’s	what	you	want,	and	
what	you’ve	got	is	an	equation	manufactured	with	curly	f,	that’s	your	algorithm,	
solve	this	equation.	The	trouble	is,	that	the	coefficients	could	depend	on	your	data.	
And	if	your	data	is	a	little	uncertain,	then	the	
coefficients	will	be	uncertain,	but	they’re	
correlated,	and	they’re	correlated	in	a	way	that	all	
interval	arithmetic	schemes	ignore.	So	that	means	
the	equation	solution	may	react	far	worse	to	
perturbations	than	it	does	to	the	true	function.	
And	this	happens	often:	load	on	elastic	structures,	
crash	tests,	least	squares;	it	used	to	happen	to	
eigenvalue	problems	until	we	got	better	
algorithms.	So,	there’s	a	remedy.	Use	higher	
precision.	Don’t	use	SORN,	or	ordinary	interval	
arithmetic.	You’ve	got	to	do	something	else.	Next	page,	please.	
	

A	third	failure	mode	is	called	
the	“wrapping	effect.”	Now,	
we’re	calling—	the	word	
wrapping	effect	doesn’t	
appear	in	the	book.	And	it’s	
suggested	it	doesn’t	happen	
because	there’s	no	exponential	
growth	in	the	error.	And	SORN	
is	the	same	thing,	on	the	same	
page,	“Uncertainty	grows	
linearly	in	general.”	It	ain’t	
true!	If	you	have	a	long	
computation,	and	especially	if	
you	have	loops,	you	run	a	risk	
of	having	exponential	growth.	
And	here	is	a	simplified	
example.	All	I	want	is,	multiply	

	 24	

a	vector	by	a	matrix.	This	matrix	is	a	twenty	by	twenty	matrix.	You	can	get	it	from,	
well,	Matlab,	it’s	a	Hadamard	matrix.	Every	element	is	one	over	the	square	root	of	
twenty.	But	the	square	of	the	matrix	is	the	identity	matrix.	So,	when	you	compute	X1,	
X2,	in	order,	in	turn,	what	you	find	is,	you’ve	got	a	big	dimension	that	can—	the	
propagation	is	a	fair	length.	But	X2N	is	X0;	there’d	be	no	growth.	But	in	any	interval	
arithmetic	scheme	that	we	have	nowadays,	your	computed	X2N	would	be	too	big	by	
this	factor:	Twenty	to	the	power	n	minus	a	half.	And	n	is	supposed	to	be	pretty	big.	
	
Well,	let’s	see.	What	should	we	do	to	cut	that	down?	Well,	what	we	do	is,	we	say,	let’s	
suppose	I’ll	tolerate	an	error	bound	that’s	400	times	bigger	than	it	ought	to	be.	So	I	
have	to	break	up	the	initial	data,	into	little	bits!	This	is	how	big—	how	many	little	
bits	you’d	have	to	have,	and	that’s	how	big	they’d	have	to	be,	but	when	you	compute	
this	number,	this	exceeds	the	number	of	parallel	processors	that	anybody	has,	
including	the	Chinese.	[chuckles]	So	it	isn’t	gonna	work.	“Mindless,	large-scale	
parallel	computing,”	that’s	the	theme	of	the	book.	It	doesn’t—always—work!	And	
that’s	the	problem.	It	doesn’t	always	work.	Next	page,	please.	
	
In	general,	the	interval	
arithmetic	community,	and	John,	
figured	out	that	if	your	answer’s	
never	wrong,	then	it	must	be	
always	right.	But	that	isn’t	quite	
true.	Because	you	can	get	
intervals	that	are	extremely	big,	
much	too	big…	Now,	how,	how	
bad	is	that,	is	that	really	a	bad	
thing?	No,	not	if	we	know	the	
intervals	too	big	because	if	we	
know	they’re	too	big	you’ll	
disregard	them	or	perhaps	not	
compute	them	at	all.	But	if	you	
don’t	know	they’re	too	big,	then	
you’ve	got	a	problem.	Should	
you	discard	a	worthwhile	project	because	it	appears,	that	it	just	doesn’t	work?	
Intervals	are	just	enormous?	So,	you	aren’t	gonna	do	it?	Or,	maybe	what	you	want	to	
do	is	some	extra	work	you	better	undertake	extra	work,	or	maybe	because	the	
intervals	are	too	big;	you	believe	them.	This	is	the	horror	that’s	done	by	oversize	
intervals.	
	
Without	that	error	analysis,	or,	another	way	of	doing	the	computation,	there	isn’t	a	
way	to	diagnose	these	kinds	of	failures.	And	then	just	to	make	matters	worse,	the	
proposal	for	SORN	arithmetic	lacks	something	called	algebraic	integrity,	which	
undermines	a	programmer’s	faith,	that	arithmetic	is	at	least	an	approximation	to	
algebra.	Let’s	see	how	that	is.	
	

	 25	

Algebraic	integrity	is	at	least	something	that	the	IEEE	Standard	has.	If	there’s	no	
rounding	errors;	if	it	has	several	different	rational	expressions	for	the	same	
function…	then	they	produce	different	values,	without	breaking	it!		But	if	they	do,	
you	could	get	at	most	two	different	values	no	matter	how	many	expressions	you	got,	
you	have	plus	or	minus	infinity,	that’s	a	possibility,	or	else	you	may	have	at	least	one	
NaN,	and	you	can	detect	that.	You	can	detect	it	because	NaNs	are	obvious,	or	you	can	
detect	it—	detect	it	because	the	Invalid	Operation	flag	is	not	raised.	But	SORN	
doesn’t	have	that.	You	see?	It	says	“No	rounding	errors…	No	exceptions…”	and	those	
are	the	pages	in	which	you	find	those	boasts.		
	

So	different	SORN	expressions	
for	rational	functions	will	
produce	different	SORNs,	and	
there	it	is,	now,	u	and	v	
happen	to	be	the	same	rational	
function…	x,	y,	z,	they’re	the	
same	rational	function.	As	
functions	in	the	field	of	
rational	functions.	But	SORN	
arithmetic,	that’s	three	
different	values.	And	there’s	
no	rounding	error,	and	there’s	
no	indication	that	there’s	
anything	wrong	with	these	
guys.	Let’s	see	why	that	
happens.	
	

You	see,	it	happens	because:	
SORN	arithmetic	doesn’t	
produce	a	NaN	for	these	
exceptional	cases.	It	produces	
the	whole	real	number	set,	
extended	real	number	set	
including	infinity.	And	of	
course	if	you	square	that,	what	
you	get	is	all	the	non-negative	
numbers	including	infinity,	and	
now	unless	you’ve	got	an	
interval	that	isn’t	everywhere,	
you	can	squish	it	in	any	number	
of	ways,	and	that’s	what	
happens	for	these	examples.	
But,	of	course	you	could	ask,	
why	would	get	all	these	different	expressions	for	the	same	function?	Well,	it’s	
because,	as	numerical	analysts,	we	know	that	there	are	occasions	where	one	
formula…	doesn’t	work	very	well.	It’ll	work	in	this	domain	but	not	in	that	domain.	

	 26	

And	so	we	develop	different	formulas	for	different	subdomains,	and	if	need	be,	if	the	
formula	malfunctions,	as	long	as	you	can	detect	it,	you	can	decide	OK,	I	guess	I	
should	use	the	other	formula	which	may	cost	more,	that’s	why	I	used	the	first	one	
first.	
	

If	an	arithmetic	system	hides	
malfunctions,	you’re	going	to	get	
into	trouble.	And	it’s	going	to	
happen	to	SORN	arithmetic.	Let’s	
see	how	that	happens.	Well,	it	
has	something	to	do	with	what	
are	called	C-solutions.	That’s	
John’s	name	for	an	important	
application	of	parallel	interval	
arithmetic.	You	see,	what	we’d	
like	to	find	are	all	the	solutions	
of	an	equation	within	a	given	
region.	I	call	these	boxes	“coffins”	
[laughter],	it	can	be	called	a	
ubox;	or	it’s	just	a	vector	of	
intervals.	But	it	looks	like	a	coffin.	

And	so,	given	an	interval	program	that	has	very	moderate	requirements,	you	have	to	
be	able	to	write	a	program	that	majorizes	the	true	equation,	and	ideally,	the	interval	
version	should	take	the	zero	as	the	width	of	the	interval	tends	to	zero,	except	for	
rounding	errors,	so	ultimately	there’s	a	limit.	It’s	how	small	you	can	make	it.	
	
Well,	here’s	the	procedure,	and	this	is	a	procedure	for	interval	arithmetic,	usable	by	
SORNs,	and	usable	by	unums.	If,	when	you	compute	this	expression,	at	a	coffin,	if	
you	know	that	it	excludes	zero	then	you	know	the	coffin	doesn’t	contain	the	solution	
so	you	throw	that	particular	interval	away.	You	partition	the	one	you	start	with	into	
small	coffins;	you	discard	all	the	ones	that	can’t	contain	the	solution,	and	then	you	
partition	all	the	remaining	ones	into	smaller	coffins,	and	do	it	again,	just	throw	away	
the	ones	that	can’t	contain	the	solution	and	you	repeat	it,	until	it	isn’t	worth	further	
subdivision.	And	this	is—	the	book	calls	these	C-solutions.	
	
Here’s	an	example.	I’d	like	to	find	the	solutions	of	this	equation.	I’ll	start	my	search	
on	the	interval	that	goes	from	zero	to	four,	well,	that’s	a	bad	choice,	because	when	
you	compute	this,	you	get	a	NaN!	Or	in	SORN	arithmetic	you	get	everything.	So	
despite	that,	we	mustn’t	discard	this	interval.	Instead,	you	subdivide	it.	You	see,	you	
can’t	say	that	it	excludes	zero.	So	you’ve	got	to	subdivide	it.	And	when	you	do	that,	
finally	the	intervals	get	small	enough,	you’ll	find	some	that	exclude	zero,	you’ll	
throw	them	away,	and	you’ll	converge	to	these	three	values	of	z.	Ah,	but	two	and	
three	are	the	only	solutions;	z	equals	one	is	not	a	solution	of	this	equation.	In	unums	
intervals,	you	would	get	a	NaN.	That	would	tip	you	off	that	there’s	something	wrong.	
In	SORNs,	you’d	get	everything;	there’s	nothing	wrong	with	everything.	You	
wouldn’t	know	that	there’s	something	wrong.	So	that	says	that	C-solutions	can	

	 27	

include	singularities	of	an	equation	unless	you	filter	them	out.	Let	me	go	to	the	next	
page,	please.	
	

Well,	the	trouble	is	that	if	SORNs	
are	never	exceptional,	it’s	going	to	
be	very	difficult	to	know	whether	
you	should	filter	something	out.	
Here	a	better	example.	It	uses	that	
function	R.	And	it’s	two	equations	
in	two	unknowns.	And	it	turns	out	
that	whenever	zero	belongs	to	a	
box,	it’s—	it’ll	be	a	rectangle,	so	
there’s	zero…	in	SORN	arithmetic.	
And	zero	belongs	to	a	box	
whenever	one	corner	is	a	lot	
closer	to	zero	than	the	others.	So	
it	turns	out	the	C-solution	process	
will	converge	to	tiny	rectangles	
clustered	around	zero,	plus	in	

SORN	arithmetic	you	get	one	that	encloses	zero.	That’s	not	a	solution,	and	you	can	
see	it’s	not	a	solution	by	looking	at	the	fact	that,	“Oh!	R	can’t	be	any	bigger	than	one,	
and	I	want	it	to	be	nine-eighths.”	Can’t	do	that.	There	
are	no	solutions	to	the	equation.	C-solutions	can	
solve	equations	that	don’t	have	a	solution.	And	there	
are	other	ways	for	this	to	happen.	
	
So,	what,	how	much	should	we	have	done	here	
instead?	Well	at	this	point,	if	the	unum	interval	
arithmetic	had	replaced	SORNs,	doesn’t	matter	if	it’s	
unums	or	intervals,	and	if	we’d	used	S	instead	of	R,	
we	would	have	gotten	rid	of	bad	intervals	and	then	
we	would	have	gotten	the	C-solution	process	to	converge	to,	no	interval	at	all.	But,	
you	choose	the	wrong	formula…	too	bad.	OK,	let’s	go	on	to	the	next	problem.	
	
Now	look:	He	says	he	doesn’t	
disparage	calculus,	well,	look,	
here’s	what	he’s	saying:		
They	should	work	when	used	the	
naïve	way,	the	way	floats	are	
usually	used.	Well,	that’s	true.	
Floats	are	usually	used	by	
ignorant	people.	After	all,	you	can	
get	a	degree	in	computer	science	
without	ever	taking	a	course	in	
numerical	analysis,	at	least	you	
can	in	this	country.	And,	here’s	

	 28	

the	essence	of	the	ubox	approach:	Mindless,	brute-force	application.	You	think	that	
mindless	brute-force	application	will	compensate	for	ignorance.	I	don’t	think	so.	
Calculus	considered	evil,	discrete—	hey,	look!	That’s	the	title	of	the	chapter!	And	
then	he	says,	calculus	deals	with	infinitesimal	quantities.		Computers	don’t.	They	
don’t	calculate	with	infinitesimals.	It’s	not	true!	
Calculus	does	not	deal	with	infinitesimal	quantities;	
it	deals	with	limits!	And	the	infinitesimal	quantities	
are	just	a	shorthand…	for	describing	what	happens	
with	limits.	They	should—	Bishop	Berkeley,	in	the	
16th—	in	the	17th	century,	had	the	same	problem,	he	
used	to	worry	about	the	“ghosts	of	vanished	
quantities”…	but	calculus	is	about	limits,	not	
infinitesimals.	If	you	write	with	infinitesimals,	
you’re	writing	a	shorthand	for	certain	kinds	of	limits.	
We	can	go	into	it	later	if	you	want.		
	
And	then	here:	When	physicists	analyze	pendulums,	they	prefer	to	talk	about	small	
oscillations—why	do	physicists	prefer	to	talk	about	small	oscillations?	They	do	that	
in	order	to	get	a	limiting	case,	to	show	you	what	happens	with	oscillations	of	small	
amplitude.	We	can	even	estimate	the	error	in	the	period,	if	you	want	to	use	bigger	
amplitude,	that’s	why	grandfather	clocks	have	such	long	pendulums.	Because	that	
way,	the	period	of	the	pendulum	doesn’t	vary	much.	And	that’s	the	whole	point	of	a	
grandfather	clock.	
	
What	about	this,	every	physical	effect,	now	this	is	his	boldface,	that	he	uses	the	word	
sampling,	where	I	use	discretization	error.	This	is	straight	out	of	his	book	on	that	
page!	Well,	he	doesn’t	do	that!	He	doesn’t	solve	physical	problems	with	a	discrete	
model.	He	says	he	does,	but	he	doesn’t.		If	you	want,	we	can	discuss	why	he	doesn’t.	
	
So	here’s	what	he	really	does.	He	treats	time	as	a	function	of	location.	But	that	works	
only	if	you	know	what	is	conserved,	and	there	are	enough	things	conserved.	But	
how	do	you	know	that	energy	and	momentum	are	conserved?	Well,	the	total	energy,	
kinetic	and	potential,	didn’t	exist	as	compu–	as	concepts,	before	the	calculus!	
	
And…	Well!	It’s	just	an	unreasonable	way	of	thinking	of	the	time	dependency	of	
physical	simulations.		He’s	saying,	instead	of	saying	the	physical	properties	depend	
on	time,	what	he’s	going	to	do	is	say,	we’re	going	to	treat	the	time	as	a	function	of	
location.	That	means	you	have	to	know	where	this	thing	is	gonna	go.	But	we	don’t	
always	know	where	a	system	is	gonna	go.	Even	the	three-body	problem,	we	don’t	
know	where	it’s	gonna	go.	So	you	can’t	do	that!	And	in	any	event,	you	can’t	cope	
with	drag	or	friction.	Because	with	drag	or	friction,	you	can’t	predict	in	advance	
where	the	mechanical	system	is	gonna	go.	Next	page	please.	
	
OK,	…yes?	
	
DEMMEL:	Five	minutes.	

	 29	

	
KAHAN:		Well,	I	will	probably	finish	in	five	minutes.	So	hear	me.	[chuckling]	
	

The	book	says,	here,	I	will	
offer	an	arbitrarily	precise	
solution	method,	no	calculus!	
Just	elementary	algebra,	well	
that’s	wrong.	Here’s	a	
counterexample.	You	see,	
here’s	a	differential	equation.	
It	looks	really	easy,	doesn’t	it,	
I	mean,	there’s	no…	higher	
mathematics	here,	that,	
gravity	that’s	conserved,	is	
transcendental.	You	can’t	get	
from	here…	to	there,	without	
the	calculus.	And	if	you	don’t	
get	there,	then	you	have	a	
more	complicated	
calculation	than	you’d	like.		

	
Well,	you	can	look	at	the	notes,	and	you’ll	see	how	that	works	out.	Now,	you	have	to	
evaluate	an	integral,	if	you’ve	got,	once	you’ve	got	these	conserved	quantities,	you,	
what	you	need	is	to	reduce	the	solution	to	the	evaluation	of	an	integral,	sometimes	
in	closed	form,	as	for,	the	Keplerian	orbits,	they’re	in	closed	form,	but	for	the	swing,	
you	have	to	actually	evaluate	an	integral,	so,	let’s	see	what	he	says	about	that.	He	
says,	“Here	is	an	error	estimate.”	It’s	an	error	bound,	actually.	And	it’s	for	the	
midpoint	rule	but	he	doesn’t	tell	us	that.	And	this,	this	is	a	literal	quote	from	his	
book!	“What	the	hell	is	that?”	
	
It	turns	out,	that	you	don’t	have	to	know	calculus	to	
differentiate,	because	there	are	programs	that	will	
do	it	for	you!	If	you	write	a	program	to	compute	a	
function,	you	can	submit	it	to	another	program	that	
will	differentiate	yours	and	produce	a	new	
program	that	interleaves	the	computation	of	your	
function,	and	its	first,	and	if	you	want	it,	second,	
derivative.	So	you	don’t	have	to	know	how	to	
differentiate,	you	just	have	to	know	that	you	need	
one.	And	you	don’t	have	to	find	the	maximum	value	
of	the	second	derivative	in	order	to	get	an	error	
bound.	Next	page,	please.	
	
You	see,	there	are	algorithms—	now,	the	book’s	algorithm,	the	work	is	of	order	one	
over	error	squared…	for	reasonable	functions.	Now	he	says	I	applied	a	case	when,	
oh,	the	second	derivative	was	infinite.	And	I	mentioned	that,	because	the	second	

	 30	

derivative	is	infinite,	instead	of	
getting	work	to	go	down	like	one	
over	the	square	root	of	error,	it	
goes	down	a	little	bit	slower	
because	the	second	derivative	is	
unbounded.	But	that	doesn’t	
matter;	it’s	still	faster	than	this	
by	an	order	of	magnitude.	And	in	
any	event,	the	fastest	algorithms	
they	go	this	way,	and	this	is	
faster	by	many	orders	of	
magnitude	than	the	other	stuff.	
But:	these	schemes	give	you	
interval	bounds,	and	that	one	
doesn’t.	You	have	to	know	

something	about	asymptotics.	You	have	to	follow	estimates,	in	order	to	see,	
asymptotically,	how	the	error	is	diminishing	in	order	to	get	any	error	estimate.	But,	
you	get	it	so	much	sooner!	And	so,	you	now	have	a	tradeoff:	Would	you	like	an	
answer	real	soon,	or	would	you	like	it	a	lot	later,	but	absolutely	guaranteed?	
	
Well,	sometimes	you	prefer	one	to	the	other,	and	in	any	event:	It’s	not	time	to	
overthrow	a	century	of	numerical	analysis,	not	yet,	and	it’s	all	irrelevant.	All	this	
stuff	about,	you	don’t	like	calculus,	and	you	should	use	this	numerical	method	or	
that,	that	has	nothing	to	do	with	comparing	unum	computing	with	what	you	should	
compare	it	with,	which	is	interval	arithmetic,	but	interval	arithmetic	with	precision	
variable	at	run	time	and	supported	by	an	appropriate	programming	language.	That	
is	the	fair	comparison.	Let’s	look	at	that.	
	
What	does	unum	computing	
cost?	It’s	too	much!	Because	
the	widths	can	vary	almost	
arbitrarily.	They’re	intended	
to	be	packed	together	tightly.	
So	let’s	see	what	happens.	
Well,	the	arithmetic	is	going	to	
have	large	latency	because	the	
unpacking	will	require	more	
pipeline	stages.	Oh,	it’s	not	
just	that	we	have	more	
transistors;	it’s	the	wires!	
When	you	have	a	lot	more	
transistors	then	you	have	
complicated	stuff.	You’re	
going	to	have	to	lay	out	wires,	
that’s	what’s	killing	you.	
	

	 31	

Memory	management.	The	book	overlooks	the	cost—	it	says	“does	the	programmer	
have	to	manage	it,	no,	no,	no,	the	computer	can	do	it”,	yeah,	for	a	price.	The	price	
comes	when	you	want	to	write	unums;	fetching	is	not	too	bad.	I	don’t	think	you’re	
going	to	want	to	skip	through	the	unums	as	a	linked	list.	You	would	probably	
prepare	a	table	of	addresses	in	advance,	to	go	with	any	set	of	unums	you’re	going	to	
read,	if	all	you’re	ever	gonna	ever	do	is	read	them.	That	would	speed	up	the	process,	
and	would	be	tolerable.	But	if	you’re	gonna	write	unums,	that	can	change	their	width,	
oh,	that’s	a	much	more	difficult	problem,	because	you	can’t	put	the	wider	unum	back	
where	you	got	it.	So	that	means	you’ve	got	to	use	a	heap.	And	if	you	use	a	heap,	then	
you’re	going	to	have	memory	defragmentation	and	garbage	collection	problems,	oh	
come	on.	You’ve	just	ignored	the	cost	of	those	things,	and	in	any	event	the	cost	
depends	crucially	on	how	your	programming	language	manages	diverse	widths.	
Next	page,	please.	
	
DEMMEL:	So,	so,	you’ve	run	out	of	your	thirty	minutes,	so—	
	
KAHAN:	Well,	just	one	more	minute,	I	think	I’m	almost	on	the	last	page.	[laughter]	
	

	
	

What	does	SORN	arithmetic	
cost,	it	turns	out,	SORN	
arithmetic	could	work,	if	you	
have	sufficiently	low	precision.	
And	it	wouldn’t	be	an	
unreasonable	thing.	You	
wouldn’t	do	it	in	the	fastest	
possible	way,	but	you	do	it	
with	a	slower	way.	Next	page.	
	
	
	
	

	 32	

	
	
	
	
How	much	precision	is	enough?	
You	see	that	little	rule	of	thumb?	
Well,	that	rule	of	thumb	has	
worked	for	a	very	long	time.	And	
of	course,	it	doesn’t	always	work.	
But	it	works	so	often,	that	what	
you	have	to	ask	yourself	is	this:	
Would	you	like	a	result	soon,	or	
would	you	like	to	wait	for	it	and	
be	absolutely	sure?	For	many	
results	it	isn’t	worth	being	
absolutely	sure,	because	it’ll	cost	
too	much.	I	mean	after	all,	for	
computer	games,	who	cares?	
Suppose	you	have	a	transient	
rounding	error	problem	in	your	computer	game.	It’ll	be	gone	in	a	moment.	

	
The	only	sure	way	to	do	deal	with	it,	is,	
error	analysis.	And	what	can	be	done	
instead?	Well,	we’ll	have	to	discuss	that	
later.	There	is	something	to	do.	
	
	
	
	
	
	
	
	
	

	
But	here’s	the	important	thing.	There	are	
some	things	that	I	don’t	want	to	know.	And	
what	I	don’t	want	to	know,	I	don't	want	to	
pay	much	for.	Here’s	what	I	do	want	to	
know,	but	it	turns	out	that	this	kind	of	
thing,	uncertainty	quantification,	this	is	
what	is	not	handled	well	by	interval,	SORN,	
or	unum	arithmetic.	It’s	a	bleeding	sore.	
	
	
	

	 33	

	
	

	
And	then	there’s	debugging.	Ah,	well.	We	
spend	at	least	three	to	four	times	as	long	
debugging	as	we	spend	writing	our	
engineering	and	scientific	software.	And	so	
that	should	weigh	on	our	minds.	But	
debugging	in	unum	arithmetic	and	SORN	
arithmetic,	that	is	going	to	be	a	real	
headache.	
	
	
	

	
	
	
	
	
	
	
OK,	I	can	quit	now.	
	
	
	
	
	
	
	
	
	
	
	
GUSTAFSON:	May	I	respond,	right	away,	to	that	last	one?	
	

DEMMEL:	Let	us	thank	both	the	speakers.	
[applause]	
	
DEMMEL:	Let	the	debate	begin.	
	
GUSTAFSON:	So,	regarding	debugging;	if	you	
add	information	to	a	number,	does	that	make	
it	harder	to	debug	or	easier?	Because	all	I’ve	
done	is	taken	floating	points	and	I’ve	
augmented	them	with	three	fields	that	are	
self-descriptive,	that	assist	in	finding	out	what	

	 34	

went	wrong	with	the	calculation.	I’m	surprised	by	this	attack.	I	think	you	should	join	
me	in	actually	
supporting	this	
kind	of	addition	
of	information	
to	a	number	so	
it	will	actually	
make	it	easier	
for	people	to	
find	out	what’s	
wrong	with	the	
calculation.	
	
KAHAN:	They	may	found	out…	that	it’s	wrong.	But	that	doesn’t	really	tell	them	what	
they	want	to	know:	What’s	wrong.	[struggles	with	microphone	switch]	
	
GUSTAFSON:	May	I	help	you?	
	
AUDIENCE	MEMBER:	Here…	isn’t	it	on?	
	
KAHAN:	It’s	got	a	tiny	little	switch…		
	
GUSTAFSON:	Point	it	at	you.	
	
KAHAN:	[more	struggling]	OK,	I	think	it’s	working	now.	OK,	it’s	one	thing	to	know	
something	is	wrong.	It’s	another	thing	to	figure	out	why	it’s	wrong.	
	
GUSTAFSON:	So	does	it	hurt	or	help	to	have	extra	fields	that	tell	all	you	about	
what’s	going	on,	with	the	uncertainty	bit,	and	where	it	happened,	and	how	big	it	is	
and	at	which	bit	it	was	not	good…	does	that	make	it	harder	to	actually	use	numerical	
methods	and	numerical	analysis?	
	
KAHAN:	Well,	what	I	want	to	know	is	where	this	happened,	in	my	program.	
	
GUSTAFSON:	So	if	you	have	a	signaling	NaN,	it	will	stop	the	system,	and	will	go	to	
the	operating	system	where	there	is	a	call	stack,	and	you	can	find	out	exactly	what	
routine	called	it,	and	what	instruction,	what	line	of	the	code,	in	fact	you	can	bring	up	
the	source	code.	This	is	where	this	happened.	So	instead	of	trying	to	encode	numbers,	
hash	pointers	to	where	things	went	wrong	in	the	five	quintillion	different	kinds	of	
NaN	that	is	supported	in	64-bit	floats,	all	you	have	to	do	is	stop,	and	let	the	
operating	system	tell,	“This	is	where	your	problem	is.”	So	I	believe	what	we	need	is	a	
quiet	NaN	that	says,	“Keep	on	going,”	or	a	noisy	NaN,	a	signaling	NaN,	that	will	stop	
it	and	give	you	all	the	debug	information	that	you	need.	The	wish	that	somehow	
people	are	going	to	start	using	all	these	many,	many	different	kinds	of	NaN	to	
encode	debug	information…	never	happened.	People	don’t	use	it.	It	doesn’t	exist.	

	 35	

We’ve	waited	thirty	years	for	this	to	happen	and	it	hasn’t	happened.	I	don’t	think	it’s	
going	to	happen.	
	

	
	
KAHAN:	Well,	it	has	helped	me,	on	some	of	my	old	computers.	[chuckles]	It	doesn’t	
happen	on	modern	computers	because	Microsoft	won’t	give	you	the	source	code	for	
their	operating	system	so	I	can’t	fiddle	with	it.	[laughter]	But	wait;	what	you’re	
saying	about	the	other	will	work	if	you’re	debugging	your	own	code	and	it’s	simple	
enough.	But	when	you’re	debugging	your	code	and	it’s	a	composite—it’s	got	your	
stuff	in	it,	and	it’s	got	other	people’s	stuff	in	it—you	can’t	just	stop.	Because,	if	you	
just	stop,	it’ll	be	too	late.	You	won’t	know	what’s	going	on.	You’ll	stop	in	the	middle	
of	somebody	else’s	program!	And	you	don’t	know	where	it	is.	You	don’t	have	source	
code.	And	if	you	did,	you	wouldn’t	wanna	read	it.	
	
GUSTAFSON:	So	what	is	your	constructive	solution	to	this?	
	
KAHAN:	Well,	the	solution	is,	to	know	first	of	all	whose	code	caused	the	problem,	
and	secondly,	what	kind	of	problem	was	it.	And	if	the	debugger	cooperates,	you	can	
even	tell	a	guy	where	it	happened,	when	you	ask	him	to	fix	it.	
	
GUSTAFSON:	Sounds	great.	I	do	want	to	comment	on	some	of	the	other	things.	
	
From	the	very	first	page	that	you	presented	where	you	say	a	unum	is	either	an	exact	
number	or	within	one-half	ULP,	I	knew	I	was	going	to	hear	another	half	hour	of	
complete	misunderstandings	of	every	definition	in	the	book.	That	is	not	what	an	
inexact	unum	is.	An	inexact	unum	is	the	open	set	between	two	exact	unums,	where	
those	look	exactly	like	floating-point	numbers.	I	can	now	mark	and	fill	in	all	the	open	
spaces	of	the	real	number	line.	There’s	nothing	like	a	plus-or-minus-half	rounding	
that	we	get.	But	the	habit	of	thinking	in	those	terms	is	bending	to,	“Let’s	bend	this	to	
something	I	can	attack	and	critique”	even	though	that’s	not	what	I	said.	
	

	 36	

“A	ubox	is	the	same	as	a	coffin.”	“Coffin”	is	a	classic	Kahan	dysphemism.	“Let’s	find	
the	most	negative	word	we	can	use	to	describe	something.”	If	you	have	interval	
arithmetic,	you	do	get	these	great	big	boxes.	They	get	bigger	and	bigger;	like,	five	to	
ten,	and	then	suddenly	they	just	blow	up.	Pretty	soon	your	bound	is	minus	infinity	
to	infinity.	Uboxes	are	one	ULP	on	a	side,	or	are	exact,	in	whatever	number	of	
dimensions	they	are.	They	are	not,	like,	from	three	to	four,	or	whatever,	and	they	
split	up	into	smaller	boxes.	So	it’s	like	confusing	a	box	of	Legos	with	the	Legos	
themselves.	You	can	build	a	lot	of	things	out	of	Legos.	You	can	build	all	kinds	of	
shapes.	It’s	not	just	“a	box.”	
	
And…	the	definitions	that	you	saw	here,	of	what	is—	it’s	always	just	a	slight	
misstatement	of	what	I	said.	“Let’s	warp	it	over	here,	and	then	make	it	say	
something	that	wasn’t	said.”	It	wasn’t	said	that,	“I	can	solve	all	ordinary	differential	
equations.”	I	said,	“Here’s	one	you	can	solve,	and	it’s	an	interesting	approach.	It	
works	for	this	one.”	Of	course	there’s	tons	of	things	I	can’t	solve	that	way.	There’s	lots	
of	problems	I	can’t	solve.	And,	I	even	mention	some	of	them	in	the	book.	I	did	not	
exaggerate	the	universality	of	these	approaches	the	way	you’re	doing	here.	I	said,	“It	
works	for	this,	it	works	for	this…	think	about	the	other	ways	you	get	the	method	to	
work.”	
	
KAHAN:	Well,	the	only	thing	I	can	do	is	quote	from	the	book	as	accurately	as	I	can,	
and	I	think	I	have.	I	think	I’ve	represented	your	ideas	fairly.	You’re	protesting	
because	now	you	see	the	consequences	of	your	ideas.	You’re	trying	to	persuade	
people	that	they	can	do	computations,	some	of	them	very	complicated,	without	
having	to	understand	what’s	going	on	inside	of	the	machine,	what’s	going	on	
mathematically.	And	I	claim	that	that	is	a	false	promise.	
	
GUSTAFSON:	For	all	things,	yes.	
	
KAHAN:	For…?	
	
GUSTAFSON:	It	won’t	work	on	everything.	Of	course	it	won’t.	
	
KAHAN:	That’s	right.	Well,	and	then,	if	you	don’t	know	when	it	will	work,	and	when	
it	won’t—	
	
GUSTAFSON:	Here’s	the	problem.	As	you’ve	said	many	times,	we	have	ever	more	
ambitious	calculations	that	we	are	attempting	with	ever	less	numerical	expertise.	
We	have	a	million	times	more	computing	power	now	than	we	had	when	the	IEEE	
Standard	was	formed.	What	can	we	do	to	improve	this	situation	and	make	
computers	a	little	bit	more	robust	and	less	error-prone	and	more	self-managing	
when	it	comes	to	numerical	calculations?	
	
I	think	we	have	now	the	ability	to	do	things	with	all	those	transistors	that	can	
actually	save	bandwidth,	which	is	another	thing	I	want	to	correct	you	on.	It’s	a	
subtle	thing,	but	you	talked	about	memory	management	being	very	expensive,	it’s	

	 37	

the	wires?	The	management	is	not	expensive.	The	management	is	inside	the	CPU.	
That’s	cheap.	It’s	actually	moving	the	data	that	costs	you.	It	is	trying	to	reduce	the	
number	of	bits.	The	reason	I	invented	unums	was	to	reduce	the	number	of	bits	going	
back	and	forth	between	the	DRAM	and	the	CPU,	to	the	absolute	minimum,	because	
otherwise	we’re	not	going	to	get	to	exascale.	It	will	actually	blow	our	power	budget.		
	
We	just	heard	from	the	Stanford	professor,	actually	the	question-and-answer-
session,	I	said		“what	about	DRAM?”	and	he	said	“Oh,	that’s	sixty	to	seventy	percent	
of	all	the	energy.”	So	if	you	can	cut	that	in	half,	now	you’re	getting	somewhere.		

	
KAHAN:	Oh	no,	no,	you—	you’re	ignoring	the	fact	that	if	the	
unums	vary	in	width	in	the	course	of	the	computation,	you’re	
going	to	have	to	put	them	onto	a	heap.	And	if	you	have	to	put	
them	onto	a	heap,	that	means	with	a	unum,	you’ve	gotta	fetch	
an	address,	also.	
	
GUSTAFSON:	Right.	So	you	will	go	between	fixed-size	storage	
unums,	and	occasionally	we	will	wrap	them	all	up	and	send	

them	off	to	disk	or	send	them	off	to	DRAM,	but	we	will	do	it	intelligently	as	needed,	
but	most	of	the	time	they	will	probably	exist	in	unpacked	form.	
	
KAHAN:	Well	the	example	in	your	book	with	the	Fast	Fourier	Transform	didn’t	do	
that.	
	
GUSTAFSON:	The	Fast	Fourier	Transform	actually	can	be	arranged	so	you	are	
almost	always	accessing	linear-ordered,	contiguous	groups.	It	is	possible	to	do	an	in-
place	Fourier	Transform	that	keeps	on	rearranging	the	data,	always	packed.	But	that	
said,	I	would	certainly	unpack,	probably,	an	FFT	to	make	the	indexing	simple.	It	
would	use	less	energy	and	do	a	better	job	of	bounding	the	answer	with	fewer	bits.		
	
KAHAN:	So	that	means	somebody	can’t	use	this	thing	mindlessly,	can	they?	
	
GUSTAFSON:	Not	completely	mindlessly,	no.	I	did	make	tools,	as	which—	certain	
things	actually	can	be	managed	with	less	effort	
to	find	what’s	going	wrong.	Because,	as	I	said,	
I’m	adding	information	to	a	number;	I’m	not	
taking	it	away.	So,	if	your	objection	is	that,	I	
used	the	word	“mindlessly,”	and	of	course	you	
can’t	completely	use	a	computer	mindlessly—
we	wish!—you	have	to	use	some	amount	of	
thought.	But	does	everybody	have	to	know	
numerical	analysis?	Does	everyone	have	to	
know	calculus?	You	know,	only	about	eight	
percent	of	the	people	in	the	world	know	
calculus?	There	have	been	studies	to	try	to	
estimate	what	is	the	overall	numerical	literacy	

	 38	

of	the	human	race,	and	if	only	eight	percent	of	the	people	can	do	numerical	methods	
on	computers,	uh,	we’re	in	trouble.	
	
KAHAN:	Are	ninety-eight	percent	of	the	population	going	to	write	numerical	
programs?	[laughter]	Look…	
	
GUSTAFSON:	There	are	lots	of	people	using	spreadsheets	who	don’t	know	what	
they’re	doing.	
	
KAHAN:	I	understand	the	desire	to	make	it	easier	for	people	to	use	computers…	to	
make	it	possible	for	them	to	do	more,	and	know	less.	And	there’s	this	little	box	here,	
the	HP-15c	which	is	exactly	that.	
	

	
	
Yes,	you	can	evaluate	an	integral.	You	can	solve	an	equation.	You	can	do	complex	
variables…	on	this	tiny	calculator.	So	I’m	in	favor,	of	making	things	easier.	But	I’m	
not	in	favor	of	telling	people	that	you	don’t	have	to	know	anything.	You	have	to	know	
something,	and	it’s	difficult	to	say	what	you	have	to	know,	but	unless	people	are	
willing	to	learn	a	little	bit	about	numerical	analysis,	they	are	very	likely	to	harm	
themselves,	or,	you.	We	all	are	going	to	depend	upon	software	that	we	get	through	
the	web.	And	if	any	idiot	can	write	the	software,	and	then	send	it	out	and	say,	“Hey,	
I’m	using	unums,	so	it	should	be	OK,”	well…	
	
GUSTAFSON:	Either	OK	or	it	will	say,	“Look,	you	just	had	a	big	error!	You’d	better	
figure	this	out,”	whereas	with	floats,	it	won’t	tell	you	a	thing.	At	least	you	get	the	
warning	with	unums.	You	know	something	went	wrong.		
	
KAHAN:	But	there	is	a	way,	with	floats,	we	saw	a	discussion	about	yesterday,	when	
someone	described	Monte	Carlo	rounding.	Now,	he’s	got	the	right	idea,	except	a	
wrong	implementation.	Let’s	see	if	you	can	simplify	the	implementation	a	lot,	and	
reduce	the	price,	a	lot,	and	still	get	the	benefit,	which	says,	with	very	high	probability,	
you’ll	discover	whether	your	results	are	contaminated	excessively	with	high	
roundoff.	And,	when	it	comes	to	uncertain	data,	that’s	the	same	sort	of	thing,	that	if	
you	re-curve	the	data	and	run	a	lot	of	experiments,	you	can	find	that	out.	But	with	

	 39	

unum	computation,	you	can	conclude,	because	you	say,	“Well,	I	put	in	my	data	as	
unums,	each	one	is	uncertain	by	a	half	a	unit	in	the	last	place,	because	that’s	as	many	
bits	as	you	have	per	unum		[laughter]	work,	how	uncertain	the	result	is,	because	of	
the	uncertainty	of	data,	well	that’s	very	optimistic.	
	

	
	
DEMMEL:	So	I	would	like	to	just	briefly	ask,	are	there	any	questions	from	the	
audience?	We	can	let	the	debate	go	on,	but	you	are,	you	know,	close	to	six-thirty,	and	
I	just	wanted	to	make	sure	that—	
	
AUDIENCE	MEMBER:	Well,	I	
have	a	question	for	you,	Dr.	
Demmel.	A	lot	of	people	use	
libraries,	such	as	LAPACK,	that	I	
know	you’re	expert	in,	or	
statistical	packages	like	R	that	
may	depend	on	large	libraries	
underneath.	What’s	gonna—	
what	do	you	think	might	happen	
in	a	world	with	a	different	
number	representation	with	
error	encoded	in	it?	Running	
through	these	large	libraries,	which	you’ve	done,	a	lot	of	error	analysis	yourself.	
	

DEMMEL:	So	this	is	one	question	that	you	
already	have	addressed	and	I	was	going	to	ask	
that,	but	let	me	ask	you:	So	imagine	I	want	to	
write	a	matrix	algorithm.	And	I	refer	to	
submatrices	all	the	time,	and	ask	for	them	in	
other	routines,	and	so	if	all	of	the	objects	are	
variable	size,	referring	to	a	submatrix	
suddenly	becomes	a	complicated	kind	of	thing.	
Would	you	say	that’s	something	to	be	
unpacked?	
	

	 40	

GUSTAFSON:	Absolutely	you	would	unpack	that.	And	as	long	as	we’re	talking	about	
linear	algebra,	the	biggest	benefit	of	the	unum	definition	and	its	environment,	is	the	
support	of	things	like	fused	dot	product.	So	you	don’t	do	any	kind	of	rounding	or	
approximation	until	you’ve	done	a	complete	dot	product.	This	is	the	idea	from	
Ulrich	Kulisch	that	he	unfortunately	patented,	which	effectively	prevented	the	world	
from	getting	to	it	for	however	long	the	patent	lasted,	
and	now	the	patent	has	expired	so	I	think	it	deserves	
some	very	serious	consideration	again.	Because	this	is	
a	very,	very	good	way	to,	at	a	possibly	slight	cost	of	
time,	get	a	much	more	reliable	answer,	that	will	obey	
associativity	for	example,	as	long	as	you’re	doing	the	
calculation	exactly,	in	the	scratchpad.	So	the	quality	of	
linear	algebra	could	improve	vastly,	simply	by	using	
exact	dot	products	throughout	the	kernels,	and	not	
making	that	rounding	error.	
	
DEMMEL:	So,	so	I	just	wanted	to	point	out	that	our	philosophy	in	building	LAPACK	
has	always	been	that	if	we	can	do	something	that	will	in	fact	keep	the	error	down,	
and,	but	the	number	of	people	who	actually	use	those	error	bounds	is	incredibly	tiny,	
compared	to	the	number	of	people	who	type	A	back-slash	b.	
	
GUSTAFSON:	Yes.	
	
DEMMEL:	And	so	that’s	why	I’m	just,	and	so—we’re	not	going	to	give	up	that	
philosophy,	but	you	know,	it’s—	it’s	had	not	as	much	impact	as	we	would	have	liked.	
And,	so	the	question	comes	up	in,	you	know,	all	the	approaches	we’re	talking	about	
here	too,	is	that,	is	it	worth	the	cost.	
	
KAHAN:	I	think	you’ve	used	the	word	“unpacking”	in	a	glib	way.	Because,	you	can	
unpack	if	all	you’re	ever	going	to	do	is	read.	But	if	you’re	going	to	write	unums,	you	
have	to	allow	that	unums	may	vary	in	length.	And	if	that’s	the	case,	you’ve	got	to	
unpack	them,	and	then	you’ve	got	something	wider,	where	are	you	going	to	put	it?	
	
GUSTAFSON:	You’re	talking	about	the	management	of	a	heap.	You’ve	taken	
something	out	of	the	heap,	and	now	it’s	gotten	bigger,	so	you	can’t	put	it	back,	that’s	
what	you’re	saying.	
	
KAHAN:	You	can’t	put	it	back	where	it	was,	that’s	right.	
	
GUSTAFSON:	You’re	not	understanding	what	“unpacking”	is.	An	unpacked	is	at	the	
maximum	size.	So	you	allow	the	maximum	size	that	a	unum	can	be.	Which	still	might	
be	a	very	usable	number	of	bits	and	a	very	large	exponent	range.	The	extra	bits	that	
you	get	can	be	used	to	mark	whether	something	is	a	NaN	or	infinity	such	that	a	
single-bit	test	actually	is	faster	than	a	float.	
	

	 41	

KAHAN:	So	you’ve	gotta	make	provision	for	what	may	be	the	largest	width	that	will	
turn	up	in	a	computation.	
	
GUSTAFSON:	When	it’s	on	the	CPU,	it	probably	will	pay	to	do	that.	
	
DEMMEL:	So,	so	let	me	just	continue	that	line…	if	you	want	to	implement	Gaussian	
elimination?	And	you	want	to	use	blocking,	which	is	what	the	standard	
optimization—	
	
KAHAN:	Is	your	microphone	on?	We	can’t	hear	you.	
	
DEMMEL:	OK,	let	me	try	one	more	time.	So,	let’s	
ask	how	we	would	implement	Gaussian	
elimination	where	we	want	to	use	the	standard	
optimization	to	get	it	to	run	at	decent	speed,	
which	is	blocking,	so	it	seems	like	we’d	have	to—	
so	we’re	going	to	be	writing	to	that	matrix	all	the	
time,	because	that’s	how	Gaussian	elimination	
works,	so	it	seems	like	the	algorithm	would	have	
to	run	in	sort	of	standard	arithmetic,	basically,	
because	you’re	going	to	reading	and	writing	the	
matrix	over	and	over	again,	and	so,	you’re	
effectively	running	in	standard	floating	point.	
Maybe	with	your	representation,	but	the	
semantics	would	be	the	same.	
	
GUSTAFSON:	It	would	be	similar.	I	think	I’d	find	a	way	to	do	it	up	to	a	certain	point	
where	as	soon	as	the	matrix	gets	so	large,	that	you	discover	you	have	to	store	it,	say,	
on	disk,	then	it’s	worth	paying	the	price	to	pack	and	unpack	these	things.	It’s	always	
an	option.	You	don’t	have	to	do	it.	But	right	now,	memory	is	two	hundred	times	
slower.	It	takes	two	hundred	times	as	long	to	fetch	an	operand	from	main	DRAM	as	
it	does	to	do	a	multiply-add	on	it.	You	can	get	an	awful	lot	of	management-type	
things	done	in	that	time,	and	figure	out	what’s	going	to	go	where.	In	your	gut	you	
said,	“Oh,	that’s	going	to	be	really	expensive!”	Spec	it	out!	Actually	do	the	calculation	
of	how	long	these	things	take.	It’s	not	something	that	you	can	just,	from	an	armchair,	
say,	“Oh,	that’s	going	to	be	really	expensive.”	You’d	be	very	surprised	at	what	the	
design	rules	of	2016	say	you	should	do,	as	expensive	versus	not	expensive.	Moving	
data	between	DRAM	and	a	CPU	is	a	choke.	You	want	to	do	as	little	of	that	as	possible,	
and	you	want	every	bit	to	count.	That’s	what	I’m	trying	to	accomplish.	So	any	time	
you	can—	
	
DEMMEL:	So,	I	would	hope	that,	maybe	that	a	future	challenge	is	to	write	optimized	
block	Gaussian	elimination	using	your	arithmetic	and	see	what	the	overhead	might	
be.	
	
GUSTAFSON:	Sure.	

	 42	

	
KAHAN:	Well,	there’s	a	second	problem.	When	you	minimize	communications	costs,	
you	end	up	using	algorithms	which,	in	some	sense,	have	to	anticipate	what	is	going	
on.	In	that	case,	you	may	require	rather	more	precision	than	you	thought,	in	order	to	
survive.	And	I	give	a	citation	to	that	on	one	of	the	documents	on	my	web	page,	
where	a	graduate	student	worked	it	out	and	found,	“My	goodness!	You	may	have	to	
use	double	precision	or	more,	when	actually	your	data	is	in	floats!	Or,	smaller!”	This	
means	it’s	hard	for	you	to	predict	how	much	precision	will	be	needed,	if	you’re	using	
an	algorithm	that	economizes	very	greatly	on	memory	movement.	The	algorithms	
that	economize	on	memory	movement	are	sufficiently	strange,	that	some	of	them	
require	extraordinary	precision	in	order	to	survive.	
	
DEMMEL:	So	I	guess	we’re	talking	about	solving	least-squared	normal	equations,	
just	to	be—	
	
KAHAN:	Exactly.	
	
DEMMEL:	—properly,	because	you	want	to	compute	a	few	x	transpose	x	and	help,	
you	sort	of	have	to	do	that	ahead	of	time.		
	
And	there’s	a	question?	
	
AUDIENCE	MEMBER:	Yes,	I	have	a	question	about	the	cost	of	performing	with	your	
basic	set	unum.	Suppose	you	had	an	iterative	big	solver,	where	you	multiply	a	
matrix.	You	have	this	nice	size,	let’s	say,	128	by	
128.	Chances	are,	every	time,	if	you	impose	a	
limit	on	the	number	of	bits	you	represent,	every	
time	you	do	an	FMA,	practically,	you	well	end	
up	rounding.	But	with	unums	you’re	going	to	
have	imprecise	bit	set.	Right?	OK.	Now	for	
matrix	multiplication	I	have	to	do,	in	this	case	
128	FMAs,	one	after	the	other,	and	chances	are	
very	high,	every	step,	I’m	going	to	have	an	
imprecise	value.	So	if	I	understand	correctly,	
after	computing	one	element	of	my	matrix	I’m	going	to	end	up	with	128	boxes.		
	
GUSTAFSON:	You’re	talking	about	the	dot	product?	
	
AUDIENCE	MEMBER:	—representation	but	the	point	I’m	making	here—	
	
GUSTAFSON:	This	is	the	dot	product	you’re	talking	about?	You’re	doing	matrix-
vector	multiply?	
	
AUDIENCE	MEMBER:	You	know,	matrix	multiplication,	where	you	take	two	vectors,	
you	know,	to	get	one	result,	right?	
	

	 43	

GUSTAFSON:	There	is	one	rounding	error	at	the	very	end.		Or,	it	wouldn’t	be	called	
a	rounding	error.	It’s	done	as	if	it	was	an	integer	multiplication.	
	
AUDIENCE	MEMBER:	My	main	question	is,	if	you	have	an	imprecise	result	every	
time	you	do	a	plus,	how	many	units	of	storage	do	you	need,	to	store	the	result?	
	
GUSTAFSON:	My	answer	is	you	do	not	do	it	in	an	inexact	after	every	plus.	You	do	
the	entire	vector;	you	do	a	dot	product	all	in	exact	arithmetic.	Then—	
	
AUDIENCE	MEMBER:	So	you	are	proposing	implementing	an	arithmetic	unit	that	
takes	together	128	values—	
	
GUSTAFSON:	It’s	called	the	Exact	Accumulator.	
	
AUDIENCE	MEMBER:	And	that’s,	exact—	
	
KAHAN:	Look!	You	don’t	use—	
	
AUDIENCE	MEMBER:	Because	if	you	use	1024	matrices,	I	should	beef	up	my—	
	
KAHAN:	OK,	look.	Most	of	the	time,	with	extremely	rare	exceptions,	you	can	do	a	
scalar	product,	accumulating	the	products	with	ever	manys	if	you	want,	or	you	can	
accumulate	them	in	variables	that	have	twice	the	width	of	the	operands.	So	you	have	
A	times	B,	say	A	and	B	are	floats,	A	times	B,	you	compute	that	in	double	and	add	it	
into	a	double	sum.	And	almost	always,	what	you’ll	get	will	be	perfectly	satisfactory.		
	

	
	
GUSTAFSON:	“Almost.”	
	
KAHAN:	And	that’s	one	of	the	reasons	why	Kulisch’s	scheme,	which	would	evaluate	
it	exactly,	isn’t	very	popular,	is	because	it	hardly	adds	anything	to	the	value.	Only	in	
extremely	special	circumstances.	So	for	your	purposes,	in	graphics,	I	think	that’s	
what	you	have	in	mind,	right?	
	
AUDIENCE	MEMBER:	Not,	not	really.	we	have	GEMMs,	all	over	the	place—	
	

	 44	

KAHAN:	I	can’t	hear	you.	
	
AUDIENCE	MEMBER:	GEMM?	Right?	Matrix	Multiply?	I	need	matrix	multiplication,	
and	my	big	question	is,	“how	much	memory	do	I	need	to	store	my	result,	under	
random	circumstances?”	
	
KAHAN:	Well,	well,	whatever	it	is—	
	
AUDIENCE	MEMBER:	If	I	use	unums.	I	understand	what	works	for	floating	point	
and	how	to	deal	with	error.	I’m	just	curious	for	unum,	how	much	memory	do	I	need	
to	store	my	results,	or	how	much	price	I	need	to	pay	for	the	exact	implementation?	
	
GUSTAFSON:	Are	you	afraid	that	somehow	it’s	going	to	become	a	gigantic	number?	
Is	that	your	fear?	Because	you	set	the	environment;	you	say,	“I	want	a	maximum	of	
this	many	bits	of	exponent—	
	
AUDIENCE	MEMBER:	So	it’s	a	really	big	problem	I’m	facing.	Basically	I	understand	
the	benefits.	I	do	not	understand	the	cost.		
	
GUSTAFSON:	And	I’m	telling	you	that—	
	
AUDIENCE	MEMBER:	What	I	heard	today,	it’s	either	going	to	be	an	extremely,	
extremely	costly	arithmetic	unit,	or	it’s	going	to	be	an	extreme	cost	because	of	
storage.	But	if	I	use	unums.	I	mean	if	it’s	my—	
	
GUSTAFSON:	I	don’t	think	you	understand.	It’s	not	unlike	saying:	“I’m	going	to	do	
this	in	double	precision.”		You	know	the	result’s	going	to	be	64	bits.	I’m	going	to	say,	
“This	is	the	biggest	exponent	I	can	have;	this	is	the	biggest	mantissa	I	can	have;	
that’s	the	size	you	can	get	to.”	It’s	not	gonna	go	beyond	that,	without	your	control.	
You	can	set—	you	can	try	that,	and	see	if	it	works.	And	if	it	doesn’t	work—	
	
AUDIENCE	MEMBER:	Let	me	make	this	simpler.	Suppose	you	have	value	A,	and	
value	B.	And	they	are	both	inexact,	right?	Which	means,	the	only	thing	to,	you	have	
to	worry	about,	whatever	the	Unit	in	the	Last	Place	you	get	with	these	unums,	I	add	
them.	A	plus	B.	All	of	a	sudden	instead	of,	let’s	say,	one	inexact	bit	at	the	end,	one	
unum	bit	at	the	end,	I’m	going	to	have	two	unum	bits.	
	
GUSTAFSON:	What?	
	
DEMMEL:	What	width	have	the	intervals.	When	you	have	two	intervals.	Width—	
	
AUDIENCE	MEMBER:	So	I’m	adding	two	numbers	that	are	not	exact,	I	cannot	store	
the	result	using	only	one	unum.	
	
GUSTAFSON:	Sometimes,	you	can.	
	

	 45	

AUDIENCE	MEMBER:	I	have—	Sometimes,	but	if	you	don’t	know	the	update,	no,	you	
cannot.	So	I	will	have,	for	simple	addition,	two	inexact	numbers	I	have	to	store;	I	
have	to	double	my	storage!	
	
GUSTAFSON:	Yeah.	
	
AUDIENCE	MEMBER:	Now	this	is	one	step—	
	
GUSTAFSON:	You	really	need	to	read	the	book.	It’s—	
	
AUDIENCE	MEMBER:	And	we’re	talking	about	the	very	same	matrix	multiplication,	
which	will	end	up	having	an	N	cubed	cost	in	terms	of	storage.	
	
GUSTAFSON:	No.	
	
AUDIENCE	MEMBER:	On	the	average	case.	That	seems	a	little	bit	extreme.	
	
GUSTAFSON:	That’s	not	the	way	they	work.	As	I	said—	
	
AUDIENCE	MEMBER:	And	my	question	is	then,	how?	
	
GUSTAFSON:	You’re	getting	into	something	where	you’d	just	about	have	to	read	
two	or	three	chapters	of	the	book	to	understand—	
	
AUDIENCE	MEMBER:	Can,	can	you	explain	in	a	few	word	why	am	I	wrong.	
	
GUSTAFSON:	Well,	first	of	all,	if	you	have—	let’s	say	
your	numbers	are—	where	you	would	store	floats,	
you	have	replaced	them	with	unums.		So	you	have	
inexact	quantities,	here.	You—	
	
AUDIENCE	MEMBER:	It’s	not	about	replacing	with	
unums.	It’s	about	how	unums	work.	I	don’t	think	
you	explained	that.	You	made	a	claim	about	how	
wonderful	it	would	be—	
	
GUSTAFSON:	In	general,	a	unum	is	not	a	closed—	
	
AUDIENCE	MEMBER:	—to	have	a	world	in	which	things	work	magically,	but	I	do	

not	understand	the	magic.	That’s	
my	problem	right	now.	
	
KAHAN:	I	think	interval	arithmetic	
was	designed	to	help	you	with	your	
problem.	Namely,	each	of	your	
arguments	is	uncertain,	and	if	you	

	 46	

use,	not	the	conventional	two	real	number,	brackets,	for	intervals,	but	you	use	the	
center	and	radius	scheme	for	intervals,	then	you’ll	find	that	no	matter	how	wide	
your	operands	are,	if	the	uncertainties	are	small,	you	will	not	have	to	worry	about	a	
great	deal	of	storage,	or	the	accumulation	of	uncertainty.		
	
But:	you	will	have	to	worry	about	the	fact	that	if	your	uncertainties	are	correlated,	
the	correlation	will	not	be	taken	into	account,	and	you	may	end	up	with	a	very	
pessimistic	estimate.	But	otherwise	than	that,	interval	arithmetic	was	designed	to	
cope	with	your	problem.	I	think	I	understand	it.	And	there	isn’t	a	simpler	way	to	deal	
with	it.	If	you	knew	in	advance	that	none	of	your	arguments	was	more	uncertain	
than,	say,	one	part	in	a	million,	then	it	would	be	possible	to	say	something	in	
advance	about	the	inherent	uncertainty	of	the	scalar	product.	But	it	would	be	very	
pessimistic.	
	
DEMMEL:	So	let	me	just	say,	we’ve	been	reminded	that	dinner	is	at	seven,	[chuckles]	
and	so	I	would	like	to	invite	both	of	our	speakers	to	make	some	closing	remarks.	So	
maybe,	one	minute	of	closing	remarks	each.	And	then	of	course,	the	debate	can	
continue	at	dinner,	if	you	desire.	[laughter]	
	
GUSTAFSON:	As	I	said,	we	have	much	more	power	than	we	used	to	have.	Maybe	I	
didn’t	get	it	right,	not	on	all	counts,	but	I	tried	to	convince	people—	get	people	to	
think	about	the	fact	that	we	need	to	use	the	vast	advances	in	technology	to	improve	
the	quality	of	computer	arithmetic,	and	we	have	the	opportunity	to	do	so.	I	would	
very	much	like	to	do	so	with	Dr.	Kahan’s	help,	not	as	an	adversary.	He	has	been	a	
man	I’ve	admired	all	my	life.	I’ve	been	doing	numerical	work	since	I	was	15.	I’ve	
been	making	use	of	his	calculators	since	I	was	in—	probably	a	freshman	in	college.		
I’ve	learned	so	much	from	this	man.	I	don’t	want	to—	I’m	not	happy	being	on	the	
other	side	of	the	fence	from	him,	because	I	think	we	do	want	to	accomplish	many	of	
the	same	things.	
	

	
	
He	may	argue	with	my	style	a	little	bit,	or	a	lot,	but	I	think	we	really	do	want	to	see	
the	same	thing	come	out	of	numerical	analysis.	

	 47	

	
KAHAN:	OK.	My	position	is	that	we	should	not	try	to	oversell	the	schemes.	We	
should	try	to	be	conservative	in	what	we	offer,	because	people	will	depend	on	it,	and	
they	depend	on	things	that	can	fail	from	time	to	time,	then	it’s	necessary	for	us	to	
estimate:	What	is	the	insurance	premium	that	should	be	paid,	in	case	the	system	
fails?	So,	if	a	system	isn’t	foolproof,	what	is	the	probability	of	failure,	how	much	will	
the	failure	cost,	and	when	you	put	that	all	together,	you	add	that	up	over	all	the	
possible	failure	modes,	and	that	gives	us	an	idea	of	how	much	an	insurance	
premium	should	cost.	
	
There’s	the	choice.	Either	the	system	has	to	be	foolproof,	or,	if	you	say	that	it’s	
foolproof,	but	it	isn’t,	then	I	would	like	to	know	what	insurance	premium	will	
Lloyd’s	of	London	charge	you?	Or,	you	can	tell	people,	“If	you	want	the	answer	in	a	
hurry,	you’re	going	to	have	to	take	a	certain	risk.	And	we’re	accustomed	to	that	in	
life.	There	are	some	situations	in	life	where,	you	have	to	accept	certain	risks	in	order	
to	get	things	done	in	a	reasonable	time.	In	numerical	computation,	there’s	a	lot	of	
that.	And	it	doesn’t	mean	that	we’re	just	guessing.	It	means	that	we	try	to	strike	a	
balance	between	getting	something	done	in	a	reasonable	length	of	time	and	having	
reasonable	confidence.		
	

	
	
I	don’t	think	that	the	world	of	computation	is	quite	as	uncertain	as	John	says	it	is,	but	
then,	since	I’m	a	numerical	analyst,	I	would	see	things	differently.	I	do	agree,	
however,	that	there	are	people	who	will	write	computer	programs	who	are	
completely	innocent	of	any	exposure	to	the	hazards	of	floating	point.	I	agree	that	that	
is	going	to	happen.	And	unfortunately,	it	is	going	to	happen	no	matter	what	John	and	
I	say	or	do.		
	
[Applause]	
	
DEMMEL:	So,	hopefully	this	video	will	be	made	available	to	all	of	you	so	you	can	
review	all	the	claims	and	counterclaims,	and	read	all	the	documents.		■
	

	 48	

/ / / / /
	

Afterword

Perhaps the strongest evidence that Kahan did not actually read the book The
End of Error: Unum Computing that he is so critical of is this part of his position
statement (page 23 of this document):

“A	third	failure	mode	is	called	the	‘wrapping	effect.’	Now,	we’re	
calling—	the	word	wrapping	effect	doesn’t	appear	in	the	book.”	

This is untrue. Here it is in the Table of Contents:

To make sure the reader does not miss it, it is clearly defined in a bright blue
definition box:

It is discussed thereafter in six different places in the book, with examples and an
exercise for the reader showing the limitations of the ubox method. It also
appears In the Glossary:

The diagrams of the wrapping effect fill entire pages and are similar to ones
Kahan himself uses in his “coffin” discussions:

	 49	

Had he even glanced through the book, spending one second per page, this
diagram would have caught his eye instantly as an example of the wrapping
effect. Yet he stated with confidence that the book shows no awareness of the
problem.

We could speculate: Did Kahan read only the first part of the 400-page book,
stopping before he got to that part of the discussion? No, that cannot be either.
Another mistake, here visible only in his statement, visible on his next-to-last
slide (page 33 of this document) and repeatedly asserted in his posted
documents, that

“unums	have	only	one	NaN.”	

That means he did not even get as far as page 23, or he would find the fact that
there are two kinds of NaN, italicized for emphasis. The three times the word
“two” appears just on that page for the number of NaN types are highlighted in
the following excerpt:

	 50	

The point that there are two unums is emphasized throughout the book and is
visible in the code listings in the Appendices as well.

When reading through this transcription and thinking about what Kahan asserts,
bear in mind the above examples. There are many other examples of Kahan
statements about unum arithmetic or the book that are blatantly incorrect.

Any statements Kahan makes about the contents or meaning of The End of
Error: Unum Arithmetic are probably incorrect, since he provably did not read it.
Similarly, his statements about what his own software would do show that he did
not even test it by running it, as shown by the bug in his Compensated
Summation code. His statements about what unum arithmetic would do show
that he did not try running the prototype unum environment, or he would have
discovered that his speculations were false.

—John Gustafson
7 January 2017

