
However, some historical benchmarks have ignored this 
common-sense aspect of benchmarking and have created 
tests that cost many man-months of effort and over a 
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Summary 

We define an approach to benchmarking, Purpose-
Based Benchmarks, which explicitly and compre-
hensively measures the ability of a computing sys-
tem to reach a goal of human interest. This con-
trasts with the traditional approach of defining a 
benchmark as a task to be timed, or as the rate at 
which some activity is performed. Purpose-Based 
Benchmarks are more difficult to create than tradi-
tional benchmarks, but have a profound advantage 
that makes them well worth the trouble: They pro-
vide a well-defined quantitative measure of the pro-
ductivity of a computer system. 

1 Introduction 

Purpose-Based Benchmarks provide a means for assess-
ing computer productivity. The focus of this paper is the 
motivation and methods for designing such benchmarks. 
Elsewhere in this volume, [Faulk et al. 2004] make use 
of this benchmark approach as a core component of pro-
ductivity analysis, and focus on human factors analysis 
and the measurement of software life cycle costs. 

1.1 BENCHMARK DESIGN GOALS 

Benchmarks are tests of computer systems that nomi-
nally serve two main purposes [Kahan 1997]: 

1) to help potential users of systems estimate the per-
formance of a system on their workload, prior to 
purchase, and 

2) to help system designers optimize their designs be-
fore finalizing their choices. 

Implicit in both of these is the idea that the bench-
mark is low-cost or quick, compared to running a full 
customer workload (or actually building a system.) 
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hundred thousand dollars to run. Ideally, benchmarks 
should maximize the amount of guidance they provide 
for the least possible effort. 

The most common aspect of a computer that bench-
marks test is “speed.” However, speed on a computer is 
not a well-defined measure. Computer “speed” lacks the 
properties we demand of metrics in physics, like meters 
per second or degrees Kelvin [Snelling 1993]. The rea-
son is that computer speed is “work” divided by time 
and computer “work” is not well defined. The standard 
workaround for this is to attempt to define a fixed task as 
the work, and consider only the reciprocal of the execu-
tion time as the figure of merit that we call “speed.” An-
other common approach is to treat quantities like “trans-
actions” or “floating-point operations” or “logical infer-
ences” as atomic units of work that can be used as the 
numerator in the speed definition. However, this ap-
proach fails because the quantities being counted vary 
greatly in individual complexity and difficulty, and 
hence cannot be used as scientific units. 

1.2 THE BENCHMARK-WORKLOAD GAP 

Every benchmark sets up an adversarial relationship if 
the benchmark designer and the benchmark user are dif-
ferent parties. Even if a test is used within a company to 
assess a proposed design, the engineers are highly moti-
vated to show that their choices yield favorable results. 
However, the primary tension of benchmarking is be-
tween marketing departments and potential customers. 
As soon as a benchmark becomes widely used, the fea-
ture subset that it exercises becomes overvalued. This 
sets up a dynamic in which the vendor can reduce its 
costs by neglecting parts of workloads that are not tested 
by the benchmark, even though they might be quite im-
portant to the customer. 

One response to this is to create a large suite of tests, 
in the hope that somehow every aspect of a workload is 
covered. However, this raises the cost of running the 
benchmark, and might not succeed in covering the total 
workload. SPEC and PERFECT Club are examples of 
efforts at achieving general workload coverage through 
the amassing of program examples that seem qualita-
tively different in some respect. It takes only slightly 
longer for vendors to tune their offerings in such a way 
that they perform well on these suites but not on applica-
tions in general. 

The message here is one for the benchmark designer: 
Assume people will exploit any difference between the 
benchmark and the actual workload, because there will 



always be motivation to use a benchmark not as a scien-
tific tool but as a persuasion tool. Put another way, the 
consumer of benchmark information thinks: “This only 
tests a subset of the machine properties, but I can proba-
bly assume that the untested things are similar in per-
formance.” The benchmark measurer thinks: “This only 
tests a subset of the machine properties, so I can sacrifice 
the performance of everything that isn’t tested.” Both 
situations exploit the benchmark-workload gap. 

The following examples show the types of things the 
author has watched go wrong in benchmarking because 
of the adversarial tension: 

Example: A benchmark allows reporting of the best 
performance achieved, not the median or mean. 
Therefore, the benchmark measurer runs it twenty 
times and manages to find and report the rare case 
that performs 30% better than it does on average. 

Example: A benchmark requires that 64-bit floating-
point data be used throughout, but only checks that 
the answer is correct to a few decimals. Therefore, 
the benchmark measurer uses quick approximations 
for all of the intrinsic functions like sin(x), ex, and 
log(x), each valid to only four decimal places, saving 
20% of the run time. 

Example: A benchmark states a large set of activities 
to perform, but only asks that some of the results be 
printed or displayed. Therefore, the benchmark 
measurer uses a compiler that tacitly eliminates any 
code that does not affect the output, effectively 
“running” large portions of the benchmark in no 
time at all. 

Example: A small (kernel) benchmark, like many 
benchmarks, only measures the execution time but 
not the time to create the executable code. There-
fore, the benchmark measurer uses a compiler that 
requires four days to exhaustively optimize the ker-
nel operation, and the program then runs in 11 sec-
onds instead of 16 seconds. The benchmark meas-
urer is further able to boast that no assembly lan-
guage or hand tuning was needed to achieve this 
45% speed improvement. 

Example: A benchmark measures both processor 
time and the time for I/O from disk, and thereby cap-
tures the time for scratch I/O, the time to read in the 
problem description, and the time to write out the fi-
nal answer. But it doesn’t time the ten minutes it 
takes to load the program into an 8000-processor 
system with a poorly-designed operating system… 
so what’s claimed as a 14-minute run really took 24 
minutes total. 

Example: A benchmark requires that only a single 
processor be tested. Therefore, the benchmark meas-
urer disables the processors in an eight-processor ar-
chitecture while leaving their caches and memory 
controllers active, allowing the entire benchmark to 
fit into the local cache and run in half the time it 
would for any configuration that a person would ac-
tually elect to use. 

Example: A benchmark measures a standalone sys-
tem, since the statistical effect of other users who 
share the system seems difficult to incorporate into 
the benchmark rules. So, a person who buys a sys-
tem based on the standalone benchmark is alarmed 
to discover that the system takes two minutes to roll 
one task out and another task in, making the system 
far less productive in actual use than the benchmark 
predicted. The system designers had no motive to 
make context switching fast since they knew it was 
not measured by the benchmark. 

Example: A benchmark based on an application pro-
gram always uses the same input data, even though 
the application program is capable of running a large 
range of possible inputs. Therefore, after the bench-
mark has been in common use for about three years, 
the benchmark measurers have learned to make that 
specific data set run fast even though doing so has 
reduced the average speed for the full range of pos-
sible input. 

Specific names of institutions and people who have 
employed these techniques are not given in these exam-
ples, because the intent is not to assign blame. The intent 
is to illustrate how traditional benchmark design inevita-
bly leads to such distortions. 

As the benchmark designers discover each of these 
unintended consequences of their imprecise rules, they 
add rules to stop people from abusing the test in that par-
ticular way. This is the approach of the SPEC consor-
tium, for example. Enforcement of such rules is difficult 
or impossible in some cases.  

A better approach is to define the benchmark in a way 
that aligns with real computer use so closely, that 
“cheating” is no longer cheating. Any method found to 
run a real workload faster or better is inherently a legiti-
mate design improvement and not a cheat. Where there 
is no gap between workload and benchmark, no cheating 
is possible. Section 2 will describe this approach in de-
tail. 
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1.3 PRINCIPLES FOR REPORTING 
RESULTS 

The High-Performance Computing (HPC) community is 
surprisingly lax in applying standards of scientific re-
porting. When a scientific paper is published announcing 
an experimental result, the authors expect to be held ac-
countable for the validity of their claims. Yet, many 
HPC benchmarks are reported with anonymous, undated 
database entries that are not reproducible by third par-
ties. If a clever technique is invented that allows a higher 
score, the submitters are in many cases allowed to keep 
their technique secret so that it becomes a competitive 
advantage; consumers of the data are misled that one 
system is superior, when the superiority actually lies in 
the cleverness of the programmer. 

In general, we should demand the following of any 
benchmark report: 

1) The date the test was made 

2) Who ran the test and how they may be contacted 

3) The precise description of what the test conditions 
were, sufficient that someone else could reproduce 
the results within statistical errors 

4) The software that was used, and an explanation for 
any modifications made to what is generally avail-
able as the definition of the benchmark 

5) An accounting of cost, including the published 
price of the system and any software that was used 
in the run. 

6) An accounting, even if approximate, of the amount 
of time spent porting the benchmark to the target 
system. 

7) Admission of any financial connections between 
vendor and the reporter; was the system a gift? Do 
they work directly for the vendor or for a contrac-
tor of the vendor? 

8) The range of results observed for the test, not just 
the most flattering results. The reporters should 
reveal the statistical distribution, even if there are 
very few data points. 

The last several requirements go beyond the reporting 
needed for scientific papers. They must, because of the 
direct marketing implications of the reports. Scientific 
papers usually don’t imply purchasing advice, the way 
benchmark reports do. The bar for benchmark reporting 
must be even higher than it is for scientific publishing. 

1.4 A MINIMAL REPRESENTATIVE SET 

Benchmark suites tend to grow beyond the size they 
need to be, for the simple reason that users refuse to be-
lieve that their requirements are represented unless they 
see a part of the suite that uses their same vocabulary 
and seems superficially to resemble their own workload. 

Thus, a program for finding the flow of air around a 
moving automobile might solve equations very similar 
to those of a weather prediction model, and use the same 
number of variables and operations, but the automotive 
engineer would refuse to accept a weather benchmark as 
predictive. Thus, benchmark components proliferate un-
til they become almost unmanageable. 

When the underlying demands of a workload are ana-
lyzed into machine-specific aspects like cache misses, 
fine-grain parallelism, or use of integer versus floating 
point operations, applications look even more similar 
than one might think. For example, even “compute-
intensive” problems rarely contain more than 5% float-
ing-point operations in their instruction traces, and 2% is 
typical. [IBM 1986] Our intuitive prejudice that each 
technical application area deserves its own operation mix 
may not withstand scrutiny. 

The more profound differences that need to be repre-
sentative are things like problem size. In circuit design, 
for example, 95% of the work might be small jobs that 
run in a few minutes and easily fit into a 32-bit address 
space; but the other 5% involve full-chip simulations 
that require 64-bit addressing and a very different set of 
system features to run well. Yet, both are in the “EDA 
market.” 

To use a transportation analogy, the difference in per-
formance of two cars in commuting a distance of 20 
miles is not apt to be very great, and probably does not 
depend that heavily on the city for which the commute is 
measured if the cities are about the same size. However, 
imagine the time to commute into a town of 2000 people 
being used to predict the time to commute into a town of 
two million people. It’s patently absurd, so we know bet-
ter than to lump those measures together into a single 
category called “commuting workload.” 

Getting the problem size right is perhaps the most 
important single thing to match in using a benchmark to 
predict a real workload. This is especially important in 
the HPC arena. Yet, it is usually the first thing to be 
thrown out by benchmark designers, since they want a 
small problem that is easy to test and fits a wide range of 
system sizes. 
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1.5 BENCHMARK EVOLUTION 

1.5.1 Activity-Based Benchmarks. For decades, the 
benchmarks used for technical computing have been ac-
tivity-based. That is, they select certain operation types 
as typical of application codes, then describe an example 
of those activities with which to exercise any particular 
computer. When accuracy is considered at all, it is not 
reported as a dimension of the performance. Current ex-
amples include 

STREAM: Measure the time for simple vector opera-
tions on vectors of meaningless data, of a 
length chosen to exercise the main ad-
dressable memory. Assume answers are 
valid. The activity measure is “bytes per 
second.” Confusion persists regarding 
whether distributed memory computers 
are allowed to confine their byte moves to 
local memory [McCalpin]. 

GUPS: Measure the rate at which a system can 
add 1 to random locations in the address-
able memory of the computing system. 
The activity measure is “updates per sec-
ond.” Confusion persists regarding 
whether distributed memory computers 
are allowed to confine their updates to lo-
cal memory, and the level of correctness 
checking. While the latest official defini-
tion is the RandomAccess benchmark, this 
definition is quite different from Table-
Toy, the original benchmark that measures 
GUPS. 

LINPACK: Measure the time to use a 1980s-style lin-
ear equation solver on a dense nonsym-
metric matrix populated with random data. 
Measure answer validity, but discard this 
information in reporting and comparing 
results. The activity measure is “floating-
point operations per second.” [Dongarra] 

The inadequacy of these activity-based tests for tasks 
(1) and (2) above is obvious. Neither the activities nor 
the metrics applied to them have anything to do with 
actual user workloads. Their only merit is that they are 
very easy to run. Scientists and engineers understand 
that these are simply activity rates, but many take it on 
faith that activity rates correlate with the ability of the 
computer to help them solve problems. 

The LINPACK benchmark, which survives mainly as 
a “Top 500” ranking contest, uses rules that place the 
measurement of activity above the measurement of ac-
complishing a purpose. We now have methods for solv-

ing linear equations, based on Strassen multiplication, 
that run in less time and give results that are more accu-
rate. However, the maintainers of the LINPACK rank-
ings explicitly forbid Strassen methods, because Strassen 
methods invalidate the floating-point operation count. 
That is, the activity measure uses the older Gaussian 
elimination method to determine the operation count. 
Strassen methods require fewer operations to get the an-
swer. Getting better answers faster via a better algorithm 
is a violation of LINPACK rules. 

1.5.2 Application Suite Approach. In an effort to 
make benchmarks more representative than these small 
kernel operations, benchmark designers have collected 
existing application programs and packaged them as 
benchmarks [SPEC, Pointer 1990]. This packaging gen-
erally includes: 

1) Insertion of timer calls so that the program times 
its own execution. (“Execution” does not include 
the time to compile the program or load it into a 
system; sometimes it does not even include the 
time to load initial data from mass storage or write 
the answer to mass storage.) 

2) An effort to restrict the source text to the subset of 
the language likely to compile correctly on a wide 
range of commercial systems. 

3) A set of rules limiting what can be done to obtain 
flattering timings. 

4) A collection of results from other systems to use 
for comparison. 

5) A specific data set on which to run the application, 
usually selected to be small enough to fit on the 
smallest systems of interest at the time the bench-
mark is declared. 

There is usually little attention to answer validity 
[Kahan 1997]. Sometimes an example output is pro-
vided, and the person performing the run must examine 
the output and decide if the answers are “close enough” 
to the example output to be acceptable. 

1.5.3 Accommodation of New Architectures. As 
parallel computers such as the Thinking Machines CM-
1, Intel iPSC, and nCUBE 10 became available as com-
mercial offerings, users found existing benchmark ap-
proaches inadequate for prediction and comparison with 
traditional architectures. Users and designers alike found 
themselves retreating to raw machine specifications like 
peak FLOPS and total memory, since those metrics were 
determinable and applied as systems scaled from uni-
processors to thousands of processors. 

In making the “application suite” benchmark ap-
proach apply to parallel systems, one is immediately 
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faced with the question of how to scale the benchmark 
without losing the experimental control over what is be-
ing compared. Obviously, larger systems are for running 
larger problems; however, application suites invariably 
fix the size of the problem and have no way to compare 
the work done by a large system with the smaller amount 
of work done by a small system 

The NAS Parallel Benchmarks are typical in this re-
spect; every time they need a different benchmark size, 
they must produce a new set of sample output to use as 
the correctness test [Bailey and Barton, 1991]. This 
means the NAS Parallel Benchmarks are not, in fact, 
scalable. They are simply different benchmarks available 
in different sizes. The new architectures demanded scal-
able benchmarks where the “work” could be fairly de-
fined and measured. 

1.5.4 Attempts at Algorithm Independence. In the 
early 1990s, technical benchmarks were introduced that 
showed alternatives to activity-based benchmarking, and 
allowed true scaling of the problem. 

SLALOM [Gustafson et al., 1991] had a kernel simi-
lar to LINPACK, but fixed the execution time at one 
minute and used the amount of detail in the answer (the 
number of patches in the domain decomposition for a 
radiosity computation) as the figure of merit. It was lan-
guage-independent, allowed any algorithm to be used, 
and included the time for reading the problem from mass 
storage, setting up the system of equations, and writing 
the answer to mass storage. It was the first truly scalable 
scientific benchmark, since the problem scaled up to the 
amount of computing power available and was self-
validating. 

SLALOM had a fatal flaw: The test geometry was 
symmetric, and researchers eventually found ways to 
exploit that symmetry to reduce the work needed com-
pared to the general case. The rules had failed to specify 
that the method had to work on a general geometry. The 
definition of answer validity (answer self-consistency to 
8 decimal digits) was better than previous scientific 
benchmarks, but still arbitrary and not derived from real 
application goals. The lesson we learned from this was 
the need to subject algorithm-independent benchmarks 
to extensive preliminary review by innovative people 
before releasing the benchmark definitions for general 
use. 

The HINT benchmark [Gustafson and Snell, 1995] 
finally established a rigorous figure of merit: The accu-
racy of a numerical integration. HINT scales to any size 
without needing comparison against a pre-computed an-
swer set. By defining the purpose instead of the activity 
(“Minimize the difference between the upper and lower 
bound of the area under a curve”), a level playing field 
was finally created for fair comparison of vastly differ-

ent computer systems. The person using the benchmark 
can use any numerical precision, floating point or integer 
type. Version 1.0 of HINT is still in use; it has remained 
valid through six cycles of Moore’s law and shows no 
sign of needing redefinition. Its only shortcoming as a 
benchmark is that the problem it solves is of little human 
interest. 

1.5.5 Grand Challenges, ASCI, and HPCS. During 
the 1990s, the discrepancy between HPC benchmarks 
and federal program goals became too great to ignore. 
The “Grand Challenge” program for supercomputing 
was so lacking in precise goal measures that it experi-
enced a loss of congressional support for funding 
[Weingarten 1993, Gustafson 1995]. The ASCI program 
set a goal of a “100 teraflops computer by 2004,” repeat-
ing the assumption that peak floating-point activity rate, 
by itself, closely predicts the ability to produce useful 
physical simulations. The emphasis on floating-point 
speed created a generation of large computing systems 
that had high arithmetic speed but were unreliable, hard 
to use, and hard to administer. 

Recognizing this, in the early 2000s DARPA devel-
oped a program, High Productivity Computing Systems 
(HPCS), to re-emphasize all those aspects of computer 
systems that had been neglected in the various giant 
computer projects of the previous decade. DARPA rec-
ognized that existing benchmarks were incapable of ho-
listic productivity measurement, and made the develop-
ment of new and better metrics a key goal of the HPCS 
program. 

The next step in benchmark evolution became clear: 
Can we create benchmarks that have rigorous definitions 
of progress toward a goal of real human interest, so that 
they can measure the actual productivity of computer 
systems?  

2 Purpose-Based Benchmarks 

2.1 DEFINITION 

A purpose-based benchmark (PBB) states an objective 
of direct interest to humans. For example, “Accurately 
predict the weather in the U.S. for the next three days” is 
a starting point for a more precise description of some-
thing to be done, and a complete PBB supplies both 
English and mathematical definitions of the task and the 
figure of merit. It does not tell how to accomplish the 
task with a computer, leaving the benchmark measurer 
free to use any means available. Whatever technique is 
used, however, must be supplied in such a way that any 
other benchmark measurer could use that technique if 
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they wished, or else the benchmark results are not con-
sidered valid and publishable. 

For those who wish to test a computer system without 
testing the program development effort, a PBB provides 
a set of reference implementations. This is simply to al-
low people to focus on the execution performance if they 
wish to ignore program development effort. It is very 
important that the productivity of a novel architecture 
not be measured starting from an inappropriate reference 
implementation. If a system demands a starting point 
that is not similar to one of the reference implementa-
tions, then the time to develop an appropriate starting 
point must be measured separately as program develop-
ment effort. 

The hardest part of designing a PBB is to find a quan-
titative measure of how well a system achieves its pur-
pose. The floating-point arithmetic used in scientific cal-
culations yields different answers depending on the algo-
rithm, the compiler, and the actual precision in the 
hardware (including registers with guard bits). Given 
this, how can we fairly compare completely different 
algorithms and architectures? 

In the weather example, we can compare against 
physical reality. Where this is impractical, we seek tasks 
for which the quality of the answer can be calculated 
rigorously by the computer itself. In both cases, methods 
such as Interval Arithmetic can play a key role by meas-
uring the uncertainty in the answer [Hansen and Walster, 
2004]. This is in contrast, say, to measuring problem 
quality by the number of grid points; adding grid points 
does not always increase physical accuracy in simula-
tions. We are accumulating problems for which both the 
physics and the solution method are sufficiently rigorous 
that the answer can be bounded or self-checked, because 
that provides a quantitative measure of how well a pro-
gram meets its purpose. 

Note that the PBB approach can measure productivity 
using legacy codes and does not require a completely 
new program to be written, for those problems where a 
quantitative measure of answer quality can be rigorously 
defined. The primary departure from the conventional 
use of legacy codes as benchmarks is that one must 
measure aspects other than just the execution time. For 
example, a PBB statement for electronic design might be 
to design an n-bit adder and test it, with the purpose of 
making the circuit fast, small, and provably correct. Us-
ers of electronic design codes do not mainly write their 
own software, but obtain it from independent software 
vendors. Hence, a PBB for electronic design could com-
pare existing software packages to see which one results 
in the best productivity for the complete task of design-
ing the adder. 

Making data-specific tuning is obviously impossible 
in the case of predicting the weather. Note that there is 

no need to state what kind of arithmetic is used (like 64-
bit or 32-bit floating point), since any arithmetic that 
accomplishes the purpose is legitimate. Benchmark 
measurers are encouraged to be economical in the activ-
ity performed by the computer, so doing more operations 
per second is no longer a goal in itself. In fact, aiming 
for more operations per second might lower the score on 
a PBB because it leads one to use less sophisticated al-
gorithms [Gustafson 1994]. 

2.2 ACCEPTABILITY FUNCTIONS 

The concept of Utility is defined in game theory [Luce 
and Raiffa, 1957]. It is a scalar ranging from –∞ to +∞ 
that attempts to quantify the value humans place on out-
comes so that different strategies can be compared. We 
use a related concept here, that of Acceptability. The Ac-
ceptability Function of an aspect of a computer system is 
the fraction of users (in a particular field) who deem the 
system acceptable. Unlike Utility, Acceptability ranges 
from 0 to 1. Acceptability Functions were first proposed 
as a way to give quantitative meaning to the vague goals 
of the U.S. “Grand Challenge” computing program 
[Gustafson 1994]. 

Acceptability Functions quantify the nonlinearity of 
the utility of many computer features. For example, if 
one computes π, having only one digit of accuracy in the 
result is unacceptable for most applications; six digits 
might suffice for most applications, but 60 digits of π is 
seldom worth ten times as much to a user as six digits! 
The Acceptability climbs from near zero (unacceptable) 
for single-digit accuracy to near unity (completely ac-
ceptable) for six or seven digits of accuracy. 
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Figure 1. Acceptability Function Example 

Here are some qualities of computer systems that are 
amenable to Acceptability function analysis: 

• Reliability (fraction of runs that complete satisfacto-
rily) 
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• Availability (fraction of the time that the system can 
be used for the problem) 

• Precision (relative or absolute accuracy of the re-
sults) 

• Time to port or develop the application 

• Time to boot the system from a cold start 

• Time to load the system with the application 

• Time to execute the application 

• Acquisition cost of the system 

• Operational cost per hour of the system (or cost of 
each run), including all administrative costs 

• Space required (footprint or volume) for physical 
system 

• Power required and heat dissipated 

For all of these aspects, each user has numbers X and 
Y for which they will say “Worse than X is unacceptable. 
Better than Y and we don’t care.” Instead of guessing 
about those numbers, or letting them be implied and un-
stated, we can declare the assumptions for each applica-
tion area and let users in that area debate their correct-
ness. If a user says “The cheaper your system, the bet-
ter,” he has implied a linear utility for the system cost 
and a lack of concern, say, with reliability. 

There’s an old saying in marketing: “Fast, cheap, and 
good… pick any two.” We can actually give this idea 
serious treatment by requiring that ∏Ai be at least, say, 
0.9 for all the Acceptability functions Ai. If computer 
procurements were stated in such terms, there would be 
much better communication of requirements between 
users and system designers. 

The aforementioned problems with repeatability, time 
to compile, reliability, time to load, and so on, can all be 
incorporated into an Acceptability Product. The Accept-
ability Product is the product of the Acceptability Func-
tions. If a particular aspect is more important, then it can 
be given greater weight simply by making its function 
steeper or altering where it changes from 0 to 1. 

What traditional benchmarking does not take into ac-
count is that this nonlinearity applies to execution time… 
and that the Acceptability curve varies widely from one 
application area to another. In fact, one might define a 
technical computing market as a collection of customers 
with similar Acceptability curves as well as similar 
workloads. 

High-energy physicists have a culture of planning 
large-scale experiments and waiting months for the re-
sults. In using supercomputers to test the viability of 
theories (like quantum chromodynamics, or searching 
for rare events in acquired data), they show similar pa-

tience and are willing to consider computer jobs requir-
ing months to complete. If given more computing power, 
they would almost certainly escalate the problem being 
attempted instead of doing the same task in less time. If 
they don’t, other scientists with more patience will make 
the discoveries first. 

The 24-hour weather forecast must be completed and 
submitted in three hours, in practice. Forecasters have 
found that the effort to update or extrapolate stale input 
data becomes so arduous at some point that a 24-hour 
forecast would never finish or would be too inaccurate to 
be useful. 

In military applications, like using a computer to de-
termine whether a tank is that of a friend or a foe, any 
time longer than a few seconds might be fatal. On the 
other hand, there is little difference between taking 0.2 
second and 0.1 second to compute, since human re-
sponse time is then greater than the computing time. 
The following is a possible Acceptability function of 
execution time, for a particular application area: 

Ac
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Figure 2. Time Acceptability Example 

This leads directly to the question of whether a 
benchmark has to last the same amount of time as the 
actual workload, in order to be representative and have 
predictive value. If the only way to predict the perform-
ance on a ten-month-long physics run is to test the ma-
chine for ten months, then the benchmark itself is pro-
hibitively expensive and becomes useless in such situa-
tions. Whereas business applications quickly reach 
steady-state behavior that permits accurate sampling, 
many technical applications progress through phases that 
make highly varying demands on the system hardware 
and software. It is not simply a matter of “warming the 
cache” in some cases. Therefore, any simplification of 
HPC workloads must be validated scientifically to show 
that the reduced problem produces results that correlate 
with the actual workload. 
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2.3 EXAMPLE: PBB FOR STRUCTURAL 
ANALYSIS (TRUSS OPTIMIZATION) 

We now bring all these measurement principles to bear 
in a benchmark designed to capture the workload of en-
gineers who use computers to assist in structural analysis 
[Mullen and Muhanna, 1999]. Typical problems in Me-
chanical Computer-Aided Engineering (MCAE) are 

• Find the stresses and strains in a design to see if it 
meets requirements. 

• Optimize a design for a particular feature, like low 
weight or low cost or high efficiency. 

• Find out if the design has resonant modes that 
could cause failure when shaken (buildings, 
bridges, engines, etc.) 

This motivates the purpose of the benchmark prob-
lem. We also pay attention to the other aspects of this 
segment that determine the other Acceptability func-
tions. Answer validity is of extreme importance, because 
failures may lead to loss of life or many millions of dol-
lars in damage. Hence, the cost acceptability function is 
related to the amount of damage (and losses from law-
suits) that the computer can prevent. Also, note that in 
the design of a large structure, the position of the parts 
probably must be specified to a precision comparable to 
other sources of errors in the part manufacturing and 
assembly. For example, 0.1 millimeter is probably over-
kill in a large structure, and 60 millimeters is probably 
out of tolerance. Finally, we note that mechanical engi-
neers are accustomed to waiting several hours for an an-
swer, even overnight, which is still not such a long time 
that it delays the construction of a proposed mechanical 
object. This takes into account the trial-and-error time 
needed, not just a single static solution for a proposed 
design. 

This is the basis for the “Truss” benchmark, which 
we now define. It is clearly far simpler and more specific 
than the gamut of mechanical engineering tasks, but it 
appears representative of much of the workload. 

2.3.1 English Statement of Purpose. Given a set of 
three attachment points on a vertical surface and a point 
away from the surface that must bear a load, find a pin-
connected steel truss structure that uses as little steel as 
possible to bear the given load. The structure must be 
rigid, but not overdetermined. Cables and struts vary in 
thickness based on the forces they must bear, including 
their own weight and the weight of the connecting joints. 
Start with no added joints, which defines the unopti-
mized weight w0: 

 

Figure 3. Initial Truss Problem, No Extra Joints 

The attachment points vary from problem to problem. 
The system does not know the attachment point coordi-
nates until the run begins. The point in space where the 
load is located, the amount of the load, and the strength 
of the steel (tensile and compressional failure) are simi-
larly subject to variation so that the benchmark cannot 
be “wired” to a particular data set. 

2.3.2 Mathematical Problem Formulation. The 
benchmark is not intended to test the structural analysis 
expertise of a programmer; the complete definition sup-
plies the explanation that a “domain expert” in MCAE 
might supply a programmer to enable the Truss program 
to be created. 

The force equilibrium requirement gives rise to a set 
of linear equations. The Truss PBB uses a “free body” 
approach. It does not require finite element analysis. 
However, it produces equations that have very similar 
structure to those used everywhere in structural analysis 
(positive definite, symmetric, sparse). 

The net force on every joint must be zero, or else the 
truss would accelerate instead of being at equilibrium. 
(The vertical surface, being fixed, will supply a counter-
ing force to anything applied to it.) The weight of each 
member produces an additional downward force that is 
split evenly between its endpoints. 

These principals, plus formulas for the strengths of 
struts and cables, complete the information needed to 
create a working Truss optimization program. 

2.3.3 Parallelization Strategies. There is enough work 
in Truss to keep even a petascale computer quite busy 
for hours, because the set of possible truss topologies 
grows very rapidly with the number of joints. 
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Figure 4. Parallel Topology Optimization 

The outermost level of parallelization is the topology 
generation. Even a small number of joints generates bil-
lions of designs to test. The next level is the optimization 
of any given topology, each of which can be spread over 
a large set of process threads. The innermost level of 
parallelism is that of solving the sparse and relatively 
small set of linear equations. This solving is iterative 
because once the thickness of each truss or cable is de-
termined from the applied forces, the resulting weights 
must be used to recompute the load until the solution 
converges. Interval arithmetic can be used to exclude 
certain topologies or joint positions, and this exclusion 
needs to be communicated to all processors so that fu-
ture searching can be “pruned” [Hansen and Walster, 
2004]. Load balancing and constant global communica-
tion create a representative challenge for large-scale sci-
entific computers. 

Figure 5 shows a truss that was optimized by an early 
form of this PBB. The blue lines represent struts (com-
pressive load), and the red lines represent cables. 

 

Figure 5. Optimized Truss Structure 

The weight reduction possible by adding complexity 
is dramatic, lest anyone think that all this computing is 
unnecessary. Figure 6 shows the drop in weight of the 
truss as joints are added, using a topology similar to that 
shown in Figure 5. 
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Figure 6. Weight Reduction with Complexity 

2.3.4 Acceptability Functions. The most important Ai 
are the ones that show Acceptability as a function of the 
reduction in weight, the accuracy of the answer, the time 
to perform the run, and the cost of the computer run. 
Many others could be included, but let’s start with these. 

The initial guess is to connect single beams and ca-
bles from the attachment points to the load point. This is 
the heaviest solution and easy to compute, so it defines 
the starting value. If we are unable to reduce the weight, 
the Acceptability is zero. If we could by some incredibly 
ingenious method reduce the weight to nothing (a sort of 
gossamer structure), then Acceptability would be one. 
The purpose that defines this purpose-based benchmark 
thus becomes one of the Acceptability functions. Ac-
ceptability = (Reduction of weight) divided by (Initial 
weight). This is a simple linear function of the weight w 
and the unoptimized weight w0: 

Aw = (w0– w)/w0: 
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Figure 7. Truss Benchmark Purpose 
Acceptability Function 

We can estimate the Acceptability function for the 
accuracy of the answer. This function and the ones that 
follow are purely for purposes of illustration, and the 
function is an invented one that “looks right”; it must be 
replaced by one based on actual studies of user require-
ments. For now, it serves as a number the computer can 
calculate at the end of a benchmark run, using higher-
quality (and slower) arithmetic than was used during the 
run: 
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Figure 8. Accuracy Acceptability 

The time to perform the run captures the patience 
typical of practitioners in this application area, which is 
often dictated by the time required for the entire task. 
The actual construction of a truss might require a few 
days to a few weeks, for example, so few engineers 
would care about the difference between an instantane-
ous answer and one that required, say, 15 minutes of 
computation. It is typical for structural analysis pro-
grams to be adjusted in complexity to the point where a 
job started at the end of the business day is finished by 
the beginning of the next business day… about 15 hours. 
A run of less than 7 hours might be well accepted (since 
it allows two runs per business day), but acceptance 
might drop to less than 0.5 if a run takes an entire day. 

The following curve was constructed to fit these esti-
mates. 
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Figure 9. Acceptability of Solution Time 

The cost of the run similarly yields a decreasing Ac-
ceptability function. At first, the cost would appear to be 
tied simply to the cost of the steel that is saved, which is 
probably only a few thousand dollars. However, a char-
acteristic of the structural analysis segment is that the 
computation insures against a design failure that could 
cost lives or result in catastrophic destruction of prop-
erty. No one would consider insuring a truss structure 
that had been designed without a quantitative analysis 
regarding its strength and safety, because failure could 
cost millions of dollars in lawsuits. The reasoning is 
similar to that used by actuaries to determine the cost of 
liability insurance.  

It is conceivable that some small fraction of designers 
would be willing to spend over $50,000 to certify that a 
structure meets all safety requirements while optimizing 
some aspect of the design. At the other extreme, it may 
be petty to reduce the cost of the computer run below, 
say, 0.1% of the cost of actually building the structure. 
Here is an example of a possible Cost acceptability func-
tion: 
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Fig. 10. Acceptability of Cost 

There are other Acceptability functions that could be 
put into the Net Acceptability product, such as reliability 
(fraction of runs that complete successfully), but we stop 
with these four for now: A = AwAaAtAc. 

This is a radical departure from the typical way that 
cost and time are incorporated into benchmark reporting. 
Many productivity measures use ratios to cost or ratios 
to time. This approach makes more sense for traditional 
business computing, where cost and time are accurately 
regarded as linearly disadvantageous. Taking twice as 
long or costing twice as much is clearly half as produc-
tive for a given amount of output. This is much less the 
case for high-end, technical computing. 

2.3.5 Result Reporting and Verification. The Truss 
benchmark produces an output that would be sufficient 
for an engineer to create the structure: the list of joints, 
their position in space, the members that connect to 
them, whether the members are cables or struts, and the 
length and cross-section of each member. Since the input 
requirements have a random component to prevent 
“cheating” on the benchmark, it is not immediately ob-
vious how to verify that the output is valid. 

In addition to the output information listed above, the 
benchmark requires that a list of forces impinging on 
each joint be printed, and the sum of those forces. This 
makes clear whether the linear system was actually 
solved, since the total force on every joint should be 
zero. The list of forces is not so large that a human can-
not scan it for validity, and of course, the computer can 
easily compute the maximum deviation from zero of the 
list of net joint forces as a single-value test of validity. 
We envision that the numerical verification of the an-
swer will use containment set methods that go well be-
yond the arithmetic used to obtain the answer, and will 
be considered part of the execution. These tests are in 
development at present. 

2.4 OBJECTIONS TO THE PBB 
APPROACH 

The PBB approach was first presented to audiences in 
late 2002. Some of the common reactions and responses 
follow. 

You shouldn’t reduce performance to a single num-
ber. It’s clearly a multidimensional quantity. 

Yes, but if you don’t define a way to reduce it to a 
single number, someone else will. Their summation 
probably will not be the one you envisioned. There-
fore, I strongly recommend that any benchmark pre-
sent the multidimensional data and try to specify the 
single figure of merit that best correlates with the 
way users would coalesce all those values. Ulti-
mately, people will reduce any collection of aspects 
to a single number that determines whether they are 
willing to pay the price for the system. The Accept-
ability Functions communicate what the assumed 
importance is of each aspect of the system, but any-
one can take the component measures and apply 
their own set of Acceptability Functions to the same 
metrics. See [Smith 1988] for an in-depth discussion 
of the single-number reporting issue. 

Since the PBB rules are so loose, doesn’t that make 
it easy to cheat? 

On the contrary, it makes cheating impossible by de-
fining it away. Cheating is possible only when there 
is a difference between user goals and what is actu-
ally measured. In the ten years that HINT has been 
available, not a single method of cheating has been 
found; this is for the reason stated. Imagine that 
someone finds a way to “cheat” by predicting the 
weather more accurately with less effort. How could 
that possibly be considered cheating? If some dis-
crepancy is found between the user goals and what 
the PBB measures, then the PBB is simply redefined 
to eliminate the discrepancy. 

You have to be a real domain expert to use one of 
these things. 

Not if we do our job right. While we need a domain 
expert to construct the benchmark (and supply Ac-
ceptability criteria), understanding a PBB descrip-
tion shouldn’t require a specialized degree in me-
chanical engineering or finance or meteorology to 
understand. Both the purpose and the explanation of 
how to solve the problem should be accessible to the 
educated public. The Truss benchmark, for example, 
requires only high school physics to program once 
we provide the rules for the strength of the cables 
and struts. Most of these problems require a one-
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page lesson in the specific math and physics they re-
quire, but if they require more than that, we probably 
have an unusable PBB and should redesign it. 

Doesn’t this just measure the cleverness of the pro-
grammers instead of the system? What will happen if 
someone comes up with a very clever way to solve 
the problem? 

Whatever clever method is used, it must be shared 
with everyone as part of the reporting of the bench-
mark. Others can then choose to use the technique or 
not. Furthermore, since PBBs can (and should) take 
into account the development cost, the use of clever 
programmers or extensive tuning effort will show up 
as reduced Acceptability in the development cost as-
pect. 

I don’t see how to make my workload purpose-based. 

The PBB approach doesn’t work universally; at least 
it doesn’t yet. An example of a workload that is dif-
ficult to make purpose-based is: “Run a simulation 
showing two galaxies colliding.” Checking the simu-
lations against actual experiment could take a long 
time indeed. There is no attempt to establish the ac-
curacy of the answer, since the value of the compu-
tation is the qualitative insight it provides into an as-
trophysical phenomenon. While we acknowledge the 
importance of programs for which the output is 
judged in a non-numerical way, we do not currently 
have a benchmark approach that encompasses them. 

Why multiply the Acceptability Functions together? 
Wouldn’t a weighted sum be better? 

A weighted sum makes sense for many “productiv-
ity” definitions, such as each stage in a software life 
cycle, but “acceptability” has different implications 
as an English word. The reason for using products is 
that one unacceptable parameter means the entire 
system is unacceptable. That’s easier to do with 
products than with weighted sums. Imagine a sys-
tem that is affordable, fast, and easy to program, but 
has just one problem: It never gets the right answer. 
Should that failure be thrown into a weighted sum 
as just one more thing to consider, or should it be 
given multiplicative “veto power” over the single-
number rating? There may be aspect pairs that rep-
resent tradeoffs, where poorness in one aspect is 
compensated by excellence in another, and then a 
weighted sum would be the right model. The Ac-
ceptability Product is similar to what one sees in 
formal procurements for computer systems. The 
Acceptability of the system is the logical AND of 
all the requirements being met, and not expressed as 
tradeoffs.  

I have a computer program that solves a very inter-
esting problem; can we make it into a Purpose-
Based Benchmark? 

Many people have presented the author with pro-
grams from their area of interest and suggested that 
they be used to define a PBB. The usual obstacle is 
that there is no quantitative definition of how well 
the program achieves its purpose, and the person 
has no idea how to compare two completely differ-
ent methods of solving the problem that take the 
same amount of time but get different answers. 
Once that’s done, the rest of the task of converting it 
to a PBB is straightforward. 

 What you’re proposing is too difficult. 

If what you want to measure is Productivity, it’s dif-
ficult to see how it can be made simpler. 

2.5 FUTURE WORK 

One lesson from history is that benchmark definitions 
are difficult to change once they are widely dissemi-
nated. Hence, we are doing very careful internal testing 
of the PBBs before including them as part of a published 
paper. We are testing the Truss PBB with college pro-
gramming classes right now. We will create versions in 
various languages and with various parallelization para-
digms (message passing, global address space, OpenMP) 
to use as starting points for those who wish to test just 
the execution characteristics of a system. Once these 
have had sufficient testing, we will disseminate them 
through the Internet and traditional computing journals. 
While the temptation was great to include an early ver-
sion of a code definition of Truss in an Appendix, this 
would almost certainly result in that becoming the com-
munity definition of the benchmark prematurely. 

A second PBB that involves radiation transport is 
nearly complete in its English and mathematical defini-
tion. An I/O-intensive PBB based on satellite image col-
lection, comparison, and archiving is under review by 
experts. A weather/climate PBB consists almost entirely 
of defining the quality of a prediction, and we expect to 
use existing public-domain weather models as reference 
implementations instead of attempting to develop our 
own. We are well along in the creation of a biological 
PBB based on the purpose of using computers to find the 
shapes and properties of proteins. 

For each PBB, we are finding domain experts to re-
view the benchmarks and verify that the workloads are 
representative and give initial feedback on the Accept-
ability Functions. Eventually, the Acceptability Func-
tions should be determined by statistical survey of users 
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in particular application areas, and updated periodically. 
A third-party institution such as IDC might be ideal for 
this task. 

SUMMARY 

The Purpose-Based Benchmark approach represents the 
latest in an evolving series of improvements to the way 
computer systems are evaluated. The key is the expres-
sion of an explicit purpose for a computation, and a way 
to measure progress toward that goal as a scalar value. 
They are particularly well suited to technical computing 
because they solve the long-standing problem of com-
paring computers that give “different answers” because 
of floating-point arithmetic variation. Furthermore, the 
Acceptability Function approach provides a way to ex-
press the nonlinearity of user requirements for aspects of 
the computation, including the Purpose. 
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