
However, some historical benchmarks have ignored this
common-sense aspect of benchmarking and have created
tests that cost many man-months of effort and over a

PURPOSE-BASED BENCHMARKS†

J. Gustafson

SUN MICROSYSTEMS, INC., USA

Summary

We define an approach to benchmarking, Purpose-
Based Benchmarks, which explicitly and compre-
hensively measures the ability of a computing sys-
tem to reach a goal of human interest. This con-
trasts with the traditional approach of defining a
benchmark as a task to be timed, or as the rate at
which some activity is performed. Purpose-Based
Benchmarks are more difficult to create than tradi-
tional benchmarks, but have a profound advantage
that makes them well worth the trouble: They pro-
vide a well-defined quantitative measure of the pro-
ductivity of a computer system.

1 Introduction

Purpose-Based Benchmarks provide a means for assess-
ing computer productivity. The focus of this paper is the
motivation and methods for designing such benchmarks.
Elsewhere in this volume, [Faulk et al. 2004] make use
of this benchmark approach as a core component of pro-
ductivity analysis, and focus on human factors analysis
and the measurement of software life cycle costs.

1.1 BENCHMARK DESIGN GOALS

Benchmarks are tests of computer systems that nomi-
nally serve two main purposes [Kahan 1997]:

1) to help potential users of systems estimate the per-
formance of a system on their workload, prior to
purchase, and

2) to help system designers optimize their designs be-
fore finalizing their choices.

Implicit in both of these is the idea that the bench-
mark is low-cost or quick, compared to running a full
customer workload (or actually building a system.)

† This work is supported by the DARPA HPCS Phase II program,
NBCH3039002

hundred thousand dollars to run. Ideally, benchmarks
should maximize the amount of guidance they provide
for the least possible effort.

The most common aspect of a computer that bench-
marks test is “speed.” However, speed on a computer is
not a well-defined measure. Computer “speed” lacks the
properties we demand of metrics in physics, like meters
per second or degrees Kelvin [Snelling 1993]. The rea-
son is that computer speed is “work” divided by time
and computer “work” is not well defined. The standard
workaround for this is to attempt to define a fixed task as
the work, and consider only the reciprocal of the execu-
tion time as the figure of merit that we call “speed.” An-
other common approach is to treat quantities like “trans-
actions” or “floating-point operations” or “logical infer-
ences” as atomic units of work that can be used as the
numerator in the speed definition. However, this ap-
proach fails because the quantities being counted vary
greatly in individual complexity and difficulty, and
hence cannot be used as scientific units.

1.2 THE BENCHMARK-WORKLOAD GAP

Every benchmark sets up an adversarial relationship if
the benchmark designer and the benchmark user are dif-
ferent parties. Even if a test is used within a company to
assess a proposed design, the engineers are highly moti-
vated to show that their choices yield favorable results.
However, the primary tension of benchmarking is be-
tween marketing departments and potential customers.
As soon as a benchmark becomes widely used, the fea-
ture subset that it exercises becomes overvalued. This
sets up a dynamic in which the vendor can reduce its
costs by neglecting parts of workloads that are not tested
by the benchmark, even though they might be quite im-
portant to the customer.

One response to this is to create a large suite of tests,
in the hope that somehow every aspect of a workload is
covered. However, this raises the cost of running the
benchmark, and might not succeed in covering the total
workload. SPEC and PERFECT Club are examples of
efforts at achieving general workload coverage through
the amassing of program examples that seem qualita-
tively different in some respect. It takes only slightly
longer for vendors to tune their offerings in such a way
that they perform well on these suites but not on applica-
tions in general.

The message here is one for the benchmark designer:
Assume people will exploit any difference between the
benchmark and the actual workload, because there will

always be motivation to use a benchmark not as a scien-
tific tool but as a persuasion tool. Put another way, the
consumer of benchmark information thinks: “This only
tests a subset of the machine properties, but I can proba-
bly assume that the untested things are similar in per-
formance.” The benchmark measurer thinks: “This only
tests a subset of the machine properties, so I can sacrifice
the performance of everything that isn’t tested.” Both
situations exploit the benchmark-workload gap.

The following examples show the types of things the
author has watched go wrong in benchmarking because
of the adversarial tension:

Example: A benchmark allows reporting of the best
performance achieved, not the median or mean.
Therefore, the benchmark measurer runs it twenty
times and manages to find and report the rare case
that performs 30% better than it does on average.

Example: A benchmark requires that 64-bit floating-
point data be used throughout, but only checks that
the answer is correct to a few decimals. Therefore,
the benchmark measurer uses quick approximations
for all of the intrinsic functions like sin(x), ex, and
log(x), each valid to only four decimal places, saving
20% of the run time.

Example: A benchmark states a large set of activities
to perform, but only asks that some of the results be
printed or displayed. Therefore, the benchmark
measurer uses a compiler that tacitly eliminates any
code that does not affect the output, effectively
“running” large portions of the benchmark in no
time at all.

Example: A small (kernel) benchmark, like many
benchmarks, only measures the execution time but
not the time to create the executable code. There-
fore, the benchmark measurer uses a compiler that
requires four days to exhaustively optimize the ker-
nel operation, and the program then runs in 11 sec-
onds instead of 16 seconds. The benchmark meas-
urer is further able to boast that no assembly lan-
guage or hand tuning was needed to achieve this
45% speed improvement.

Example: A benchmark measures both processor
time and the time for I/O from disk, and thereby cap-
tures the time for scratch I/O, the time to read in the
problem description, and the time to write out the fi-
nal answer. But it doesn’t time the ten minutes it
takes to load the program into an 8000-processor
system with a poorly-designed operating system…
so what’s claimed as a 14-minute run really took 24
minutes total.

Example: A benchmark requires that only a single
processor be tested. Therefore, the benchmark meas-
urer disables the processors in an eight-processor ar-
chitecture while leaving their caches and memory
controllers active, allowing the entire benchmark to
fit into the local cache and run in half the time it
would for any configuration that a person would ac-
tually elect to use.

Example: A benchmark measures a standalone sys-
tem, since the statistical effect of other users who
share the system seems difficult to incorporate into
the benchmark rules. So, a person who buys a sys-
tem based on the standalone benchmark is alarmed
to discover that the system takes two minutes to roll
one task out and another task in, making the system
far less productive in actual use than the benchmark
predicted. The system designers had no motive to
make context switching fast since they knew it was
not measured by the benchmark.

Example: A benchmark based on an application pro-
gram always uses the same input data, even though
the application program is capable of running a large
range of possible inputs. Therefore, after the bench-
mark has been in common use for about three years,
the benchmark measurers have learned to make that
specific data set run fast even though doing so has
reduced the average speed for the full range of pos-
sible input.

Specific names of institutions and people who have
employed these techniques are not given in these exam-
ples, because the intent is not to assign blame. The intent
is to illustrate how traditional benchmark design inevita-
bly leads to such distortions.

As the benchmark designers discover each of these
unintended consequences of their imprecise rules, they
add rules to stop people from abusing the test in that par-
ticular way. This is the approach of the SPEC consor-
tium, for example. Enforcement of such rules is difficult
or impossible in some cases.

A better approach is to define the benchmark in a way
that aligns with real computer use so closely, that
“cheating” is no longer cheating. Any method found to
run a real workload faster or better is inherently a legiti-
mate design improvement and not a cheat. Where there
is no gap between workload and benchmark, no cheating
is possible. Section 2 will describe this approach in de-
tail.

 2

1.3 PRINCIPLES FOR REPORTING
RESULTS

The High-Performance Computing (HPC) community is
surprisingly lax in applying standards of scientific re-
porting. When a scientific paper is published announcing
an experimental result, the authors expect to be held ac-
countable for the validity of their claims. Yet, many
HPC benchmarks are reported with anonymous, undated
database entries that are not reproducible by third par-
ties. If a clever technique is invented that allows a higher
score, the submitters are in many cases allowed to keep
their technique secret so that it becomes a competitive
advantage; consumers of the data are misled that one
system is superior, when the superiority actually lies in
the cleverness of the programmer.

In general, we should demand the following of any
benchmark report:

1) The date the test was made

2) Who ran the test and how they may be contacted

3) The precise description of what the test conditions
were, sufficient that someone else could reproduce
the results within statistical errors

4) The software that was used, and an explanation for
any modifications made to what is generally avail-
able as the definition of the benchmark

5) An accounting of cost, including the published
price of the system and any software that was used
in the run.

6) An accounting, even if approximate, of the amount
of time spent porting the benchmark to the target
system.

7) Admission of any financial connections between
vendor and the reporter; was the system a gift? Do
they work directly for the vendor or for a contrac-
tor of the vendor?

8) The range of results observed for the test, not just
the most flattering results. The reporters should
reveal the statistical distribution, even if there are
very few data points.

The last several requirements go beyond the reporting
needed for scientific papers. They must, because of the
direct marketing implications of the reports. Scientific
papers usually don’t imply purchasing advice, the way
benchmark reports do. The bar for benchmark reporting
must be even higher than it is for scientific publishing.

1.4 A MINIMAL REPRESENTATIVE SET

Benchmark suites tend to grow beyond the size they
need to be, for the simple reason that users refuse to be-
lieve that their requirements are represented unless they
see a part of the suite that uses their same vocabulary
and seems superficially to resemble their own workload.

Thus, a program for finding the flow of air around a
moving automobile might solve equations very similar
to those of a weather prediction model, and use the same
number of variables and operations, but the automotive
engineer would refuse to accept a weather benchmark as
predictive. Thus, benchmark components proliferate un-
til they become almost unmanageable.

When the underlying demands of a workload are ana-
lyzed into machine-specific aspects like cache misses,
fine-grain parallelism, or use of integer versus floating
point operations, applications look even more similar
than one might think. For example, even “compute-
intensive” problems rarely contain more than 5% float-
ing-point operations in their instruction traces, and 2% is
typical. [IBM 1986] Our intuitive prejudice that each
technical application area deserves its own operation mix
may not withstand scrutiny.

The more profound differences that need to be repre-
sentative are things like problem size. In circuit design,
for example, 95% of the work might be small jobs that
run in a few minutes and easily fit into a 32-bit address
space; but the other 5% involve full-chip simulations
that require 64-bit addressing and a very different set of
system features to run well. Yet, both are in the “EDA
market.”

To use a transportation analogy, the difference in per-
formance of two cars in commuting a distance of 20
miles is not apt to be very great, and probably does not
depend that heavily on the city for which the commute is
measured if the cities are about the same size. However,
imagine the time to commute into a town of 2000 people
being used to predict the time to commute into a town of
two million people. It’s patently absurd, so we know bet-
ter than to lump those measures together into a single
category called “commuting workload.”

Getting the problem size right is perhaps the most
important single thing to match in using a benchmark to
predict a real workload. This is especially important in
the HPC arena. Yet, it is usually the first thing to be
thrown out by benchmark designers, since they want a
small problem that is easy to test and fits a wide range of
system sizes.

 3

1.5 BENCHMARK EVOLUTION

1.5.1 Activity-Based Benchmarks. For decades, the
benchmarks used for technical computing have been ac-
tivity-based. That is, they select certain operation types
as typical of application codes, then describe an example
of those activities with which to exercise any particular
computer. When accuracy is considered at all, it is not
reported as a dimension of the performance. Current ex-
amples include

STREAM: Measure the time for simple vector opera-
tions on vectors of meaningless data, of a
length chosen to exercise the main ad-
dressable memory. Assume answers are
valid. The activity measure is “bytes per
second.” Confusion persists regarding
whether distributed memory computers
are allowed to confine their byte moves to
local memory [McCalpin].

GUPS: Measure the rate at which a system can
add 1 to random locations in the address-
able memory of the computing system.
The activity measure is “updates per sec-
ond.” Confusion persists regarding
whether distributed memory computers
are allowed to confine their updates to lo-
cal memory, and the level of correctness
checking. While the latest official defini-
tion is the RandomAccess benchmark, this
definition is quite different from Table-
Toy, the original benchmark that measures
GUPS.

LINPACK: Measure the time to use a 1980s-style lin-
ear equation solver on a dense nonsym-
metric matrix populated with random data.
Measure answer validity, but discard this
information in reporting and comparing
results. The activity measure is “floating-
point operations per second.” [Dongarra]

The inadequacy of these activity-based tests for tasks
(1) and (2) above is obvious. Neither the activities nor
the metrics applied to them have anything to do with
actual user workloads. Their only merit is that they are
very easy to run. Scientists and engineers understand
that these are simply activity rates, but many take it on
faith that activity rates correlate with the ability of the
computer to help them solve problems.

The LINPACK benchmark, which survives mainly as
a “Top 500” ranking contest, uses rules that place the
measurement of activity above the measurement of ac-
complishing a purpose. We now have methods for solv-

ing linear equations, based on Strassen multiplication,
that run in less time and give results that are more accu-
rate. However, the maintainers of the LINPACK rank-
ings explicitly forbid Strassen methods, because Strassen
methods invalidate the floating-point operation count.
That is, the activity measure uses the older Gaussian
elimination method to determine the operation count.
Strassen methods require fewer operations to get the an-
swer. Getting better answers faster via a better algorithm
is a violation of LINPACK rules.

1.5.2 Application Suite Approach. In an effort to
make benchmarks more representative than these small
kernel operations, benchmark designers have collected
existing application programs and packaged them as
benchmarks [SPEC, Pointer 1990]. This packaging gen-
erally includes:

1) Insertion of timer calls so that the program times
its own execution. (“Execution” does not include
the time to compile the program or load it into a
system; sometimes it does not even include the
time to load initial data from mass storage or write
the answer to mass storage.)

2) An effort to restrict the source text to the subset of
the language likely to compile correctly on a wide
range of commercial systems.

3) A set of rules limiting what can be done to obtain
flattering timings.

4) A collection of results from other systems to use
for comparison.

5) A specific data set on which to run the application,
usually selected to be small enough to fit on the
smallest systems of interest at the time the bench-
mark is declared.

There is usually little attention to answer validity
[Kahan 1997]. Sometimes an example output is pro-
vided, and the person performing the run must examine
the output and decide if the answers are “close enough”
to the example output to be acceptable.

1.5.3 Accommodation of New Architectures. As
parallel computers such as the Thinking Machines CM-
1, Intel iPSC, and nCUBE 10 became available as com-
mercial offerings, users found existing benchmark ap-
proaches inadequate for prediction and comparison with
traditional architectures. Users and designers alike found
themselves retreating to raw machine specifications like
peak FLOPS and total memory, since those metrics were
determinable and applied as systems scaled from uni-
processors to thousands of processors.

In making the “application suite” benchmark ap-
proach apply to parallel systems, one is immediately

 4

faced with the question of how to scale the benchmark
without losing the experimental control over what is be-
ing compared. Obviously, larger systems are for running
larger problems; however, application suites invariably
fix the size of the problem and have no way to compare
the work done by a large system with the smaller amount
of work done by a small system

The NAS Parallel Benchmarks are typical in this re-
spect; every time they need a different benchmark size,
they must produce a new set of sample output to use as
the correctness test [Bailey and Barton, 1991]. This
means the NAS Parallel Benchmarks are not, in fact,
scalable. They are simply different benchmarks available
in different sizes. The new architectures demanded scal-
able benchmarks where the “work” could be fairly de-
fined and measured.

1.5.4 Attempts at Algorithm Independence. In the
early 1990s, technical benchmarks were introduced that
showed alternatives to activity-based benchmarking, and
allowed true scaling of the problem.

SLALOM [Gustafson et al., 1991] had a kernel simi-
lar to LINPACK, but fixed the execution time at one
minute and used the amount of detail in the answer (the
number of patches in the domain decomposition for a
radiosity computation) as the figure of merit. It was lan-
guage-independent, allowed any algorithm to be used,
and included the time for reading the problem from mass
storage, setting up the system of equations, and writing
the answer to mass storage. It was the first truly scalable
scientific benchmark, since the problem scaled up to the
amount of computing power available and was self-
validating.

SLALOM had a fatal flaw: The test geometry was
symmetric, and researchers eventually found ways to
exploit that symmetry to reduce the work needed com-
pared to the general case. The rules had failed to specify
that the method had to work on a general geometry. The
definition of answer validity (answer self-consistency to
8 decimal digits) was better than previous scientific
benchmarks, but still arbitrary and not derived from real
application goals. The lesson we learned from this was
the need to subject algorithm-independent benchmarks
to extensive preliminary review by innovative people
before releasing the benchmark definitions for general
use.

The HINT benchmark [Gustafson and Snell, 1995]
finally established a rigorous figure of merit: The accu-
racy of a numerical integration. HINT scales to any size
without needing comparison against a pre-computed an-
swer set. By defining the purpose instead of the activity
(“Minimize the difference between the upper and lower
bound of the area under a curve”), a level playing field
was finally created for fair comparison of vastly differ-

ent computer systems. The person using the benchmark
can use any numerical precision, floating point or integer
type. Version 1.0 of HINT is still in use; it has remained
valid through six cycles of Moore’s law and shows no
sign of needing redefinition. Its only shortcoming as a
benchmark is that the problem it solves is of little human
interest.

1.5.5 Grand Challenges, ASCI, and HPCS. During
the 1990s, the discrepancy between HPC benchmarks
and federal program goals became too great to ignore.
The “Grand Challenge” program for supercomputing
was so lacking in precise goal measures that it experi-
enced a loss of congressional support for funding
[Weingarten 1993, Gustafson 1995]. The ASCI program
set a goal of a “100 teraflops computer by 2004,” repeat-
ing the assumption that peak floating-point activity rate,
by itself, closely predicts the ability to produce useful
physical simulations. The emphasis on floating-point
speed created a generation of large computing systems
that had high arithmetic speed but were unreliable, hard
to use, and hard to administer.

Recognizing this, in the early 2000s DARPA devel-
oped a program, High Productivity Computing Systems
(HPCS), to re-emphasize all those aspects of computer
systems that had been neglected in the various giant
computer projects of the previous decade. DARPA rec-
ognized that existing benchmarks were incapable of ho-
listic productivity measurement, and made the develop-
ment of new and better metrics a key goal of the HPCS
program.

The next step in benchmark evolution became clear:
Can we create benchmarks that have rigorous definitions
of progress toward a goal of real human interest, so that
they can measure the actual productivity of computer
systems?

2 Purpose-Based Benchmarks

2.1 DEFINITION

A purpose-based benchmark (PBB) states an objective
of direct interest to humans. For example, “Accurately
predict the weather in the U.S. for the next three days” is
a starting point for a more precise description of some-
thing to be done, and a complete PBB supplies both
English and mathematical definitions of the task and the
figure of merit. It does not tell how to accomplish the
task with a computer, leaving the benchmark measurer
free to use any means available. Whatever technique is
used, however, must be supplied in such a way that any
other benchmark measurer could use that technique if

 5

they wished, or else the benchmark results are not con-
sidered valid and publishable.

For those who wish to test a computer system without
testing the program development effort, a PBB provides
a set of reference implementations. This is simply to al-
low people to focus on the execution performance if they
wish to ignore program development effort. It is very
important that the productivity of a novel architecture
not be measured starting from an inappropriate reference
implementation. If a system demands a starting point
that is not similar to one of the reference implementa-
tions, then the time to develop an appropriate starting
point must be measured separately as program develop-
ment effort.

The hardest part of designing a PBB is to find a quan-
titative measure of how well a system achieves its pur-
pose. The floating-point arithmetic used in scientific cal-
culations yields different answers depending on the algo-
rithm, the compiler, and the actual precision in the
hardware (including registers with guard bits). Given
this, how can we fairly compare completely different
algorithms and architectures?

In the weather example, we can compare against
physical reality. Where this is impractical, we seek tasks
for which the quality of the answer can be calculated
rigorously by the computer itself. In both cases, methods
such as Interval Arithmetic can play a key role by meas-
uring the uncertainty in the answer [Hansen and Walster,
2004]. This is in contrast, say, to measuring problem
quality by the number of grid points; adding grid points
does not always increase physical accuracy in simula-
tions. We are accumulating problems for which both the
physics and the solution method are sufficiently rigorous
that the answer can be bounded or self-checked, because
that provides a quantitative measure of how well a pro-
gram meets its purpose.

Note that the PBB approach can measure productivity
using legacy codes and does not require a completely
new program to be written, for those problems where a
quantitative measure of answer quality can be rigorously
defined. The primary departure from the conventional
use of legacy codes as benchmarks is that one must
measure aspects other than just the execution time. For
example, a PBB statement for electronic design might be
to design an n-bit adder and test it, with the purpose of
making the circuit fast, small, and provably correct. Us-
ers of electronic design codes do not mainly write their
own software, but obtain it from independent software
vendors. Hence, a PBB for electronic design could com-
pare existing software packages to see which one results
in the best productivity for the complete task of design-
ing the adder.

Making data-specific tuning is obviously impossible
in the case of predicting the weather. Note that there is

no need to state what kind of arithmetic is used (like 64-
bit or 32-bit floating point), since any arithmetic that
accomplishes the purpose is legitimate. Benchmark
measurers are encouraged to be economical in the activ-
ity performed by the computer, so doing more operations
per second is no longer a goal in itself. In fact, aiming
for more operations per second might lower the score on
a PBB because it leads one to use less sophisticated al-
gorithms [Gustafson 1994].

2.2 ACCEPTABILITY FUNCTIONS

The concept of Utility is defined in game theory [Luce
and Raiffa, 1957]. It is a scalar ranging from –∞ to +∞
that attempts to quantify the value humans place on out-
comes so that different strategies can be compared. We
use a related concept here, that of Acceptability. The Ac-
ceptability Function of an aspect of a computer system is
the fraction of users (in a particular field) who deem the
system acceptable. Unlike Utility, Acceptability ranges
from 0 to 1. Acceptability Functions were first proposed
as a way to give quantitative meaning to the vague goals
of the U.S. “Grand Challenge” computing program
[Gustafson 1994].

Acceptability Functions quantify the nonlinearity of
the utility of many computer features. For example, if
one computes π, having only one digit of accuracy in the
result is unacceptable for most applications; six digits
might suffice for most applications, but 60 digits of π is
seldom worth ten times as much to a user as six digits!
The Acceptability climbs from near zero (unacceptable)
for single-digit accuracy to near unity (completely ac-
ceptable) for six or seven digits of accuracy.

1

0
0 1 2 3 4 5 6 7 8 9

A
cc

ep
ta

bi
lit

y

Accurate decimals in result

Figure 1. Acceptability Function Example

Here are some qualities of computer systems that are
amenable to Acceptability function analysis:

• Reliability (fraction of runs that complete satisfacto-
rily)

 6

• Availability (fraction of the time that the system can
be used for the problem)

• Precision (relative or absolute accuracy of the re-
sults)

• Time to port or develop the application

• Time to boot the system from a cold start

• Time to load the system with the application

• Time to execute the application

• Acquisition cost of the system

• Operational cost per hour of the system (or cost of
each run), including all administrative costs

• Space required (footprint or volume) for physical
system

• Power required and heat dissipated

For all of these aspects, each user has numbers X and
Y for which they will say “Worse than X is unacceptable.
Better than Y and we don’t care.” Instead of guessing
about those numbers, or letting them be implied and un-
stated, we can declare the assumptions for each applica-
tion area and let users in that area debate their correct-
ness. If a user says “The cheaper your system, the bet-
ter,” he has implied a linear utility for the system cost
and a lack of concern, say, with reliability.

There’s an old saying in marketing: “Fast, cheap, and
good… pick any two.” We can actually give this idea
serious treatment by requiring that ∏Ai be at least, say,
0.9 for all the Acceptability functions Ai. If computer
procurements were stated in such terms, there would be
much better communication of requirements between
users and system designers.

The aforementioned problems with repeatability, time
to compile, reliability, time to load, and so on, can all be
incorporated into an Acceptability Product. The Accept-
ability Product is the product of the Acceptability Func-
tions. If a particular aspect is more important, then it can
be given greater weight simply by making its function
steeper or altering where it changes from 0 to 1.

What traditional benchmarking does not take into ac-
count is that this nonlinearity applies to execution time…
and that the Acceptability curve varies widely from one
application area to another. In fact, one might define a
technical computing market as a collection of customers
with similar Acceptability curves as well as similar
workloads.

High-energy physicists have a culture of planning
large-scale experiments and waiting months for the re-
sults. In using supercomputers to test the viability of
theories (like quantum chromodynamics, or searching
for rare events in acquired data), they show similar pa-

tience and are willing to consider computer jobs requir-
ing months to complete. If given more computing power,
they would almost certainly escalate the problem being
attempted instead of doing the same task in less time. If
they don’t, other scientists with more patience will make
the discoveries first.

The 24-hour weather forecast must be completed and
submitted in three hours, in practice. Forecasters have
found that the effort to update or extrapolate stale input
data becomes so arduous at some point that a 24-hour
forecast would never finish or would be too inaccurate to
be useful.

In military applications, like using a computer to de-
termine whether a tank is that of a friend or a foe, any
time longer than a few seconds might be fatal. On the
other hand, there is little difference between taking 0.2
second and 0.1 second to compute, since human re-
sponse time is then greater than the computing time.
The following is a possible Acceptability function of
execution time, for a particular application area:

Ac
ce

pt
ab

ili
ty

0.0

1.0

Time to solution
0.1 days 5 days

Figure 2. Time Acceptability Example

This leads directly to the question of whether a
benchmark has to last the same amount of time as the
actual workload, in order to be representative and have
predictive value. If the only way to predict the perform-
ance on a ten-month-long physics run is to test the ma-
chine for ten months, then the benchmark itself is pro-
hibitively expensive and becomes useless in such situa-
tions. Whereas business applications quickly reach
steady-state behavior that permits accurate sampling,
many technical applications progress through phases that
make highly varying demands on the system hardware
and software. It is not simply a matter of “warming the
cache” in some cases. Therefore, any simplification of
HPC workloads must be validated scientifically to show
that the reduced problem produces results that correlate
with the actual workload.

 7

2.3 EXAMPLE: PBB FOR STRUCTURAL
ANALYSIS (TRUSS OPTIMIZATION)

We now bring all these measurement principles to bear
in a benchmark designed to capture the workload of en-
gineers who use computers to assist in structural analysis
[Mullen and Muhanna, 1999]. Typical problems in Me-
chanical Computer-Aided Engineering (MCAE) are

• Find the stresses and strains in a design to see if it
meets requirements.

• Optimize a design for a particular feature, like low
weight or low cost or high efficiency.

• Find out if the design has resonant modes that
could cause failure when shaken (buildings,
bridges, engines, etc.)

This motivates the purpose of the benchmark prob-
lem. We also pay attention to the other aspects of this
segment that determine the other Acceptability func-
tions. Answer validity is of extreme importance, because
failures may lead to loss of life or many millions of dol-
lars in damage. Hence, the cost acceptability function is
related to the amount of damage (and losses from law-
suits) that the computer can prevent. Also, note that in
the design of a large structure, the position of the parts
probably must be specified to a precision comparable to
other sources of errors in the part manufacturing and
assembly. For example, 0.1 millimeter is probably over-
kill in a large structure, and 60 millimeters is probably
out of tolerance. Finally, we note that mechanical engi-
neers are accustomed to waiting several hours for an an-
swer, even overnight, which is still not such a long time
that it delays the construction of a proposed mechanical
object. This takes into account the trial-and-error time
needed, not just a single static solution for a proposed
design.

This is the basis for the “Truss” benchmark, which
we now define. It is clearly far simpler and more specific
than the gamut of mechanical engineering tasks, but it
appears representative of much of the workload.

2.3.1 English Statement of Purpose. Given a set of
three attachment points on a vertical surface and a point
away from the surface that must bear a load, find a pin-
connected steel truss structure that uses as little steel as
possible to bear the given load. The structure must be
rigid, but not overdetermined. Cables and struts vary in
thickness based on the forces they must bear, including
their own weight and the weight of the connecting joints.
Start with no added joints, which defines the unopti-
mized weight w0:

Figure 3. Initial Truss Problem, No Extra Joints

The attachment points vary from problem to problem.
The system does not know the attachment point coordi-
nates until the run begins. The point in space where the
load is located, the amount of the load, and the strength
of the steel (tensile and compressional failure) are simi-
larly subject to variation so that the benchmark cannot
be “wired” to a particular data set.

2.3.2 Mathematical Problem Formulation. The
benchmark is not intended to test the structural analysis
expertise of a programmer; the complete definition sup-
plies the explanation that a “domain expert” in MCAE
might supply a programmer to enable the Truss program
to be created.

The force equilibrium requirement gives rise to a set
of linear equations. The Truss PBB uses a “free body”
approach. It does not require finite element analysis.
However, it produces equations that have very similar
structure to those used everywhere in structural analysis
(positive definite, symmetric, sparse).

The net force on every joint must be zero, or else the
truss would accelerate instead of being at equilibrium.
(The vertical surface, being fixed, will supply a counter-
ing force to anything applied to it.) The weight of each
member produces an additional downward force that is
split evenly between its endpoints.

These principals, plus formulas for the strengths of
struts and cables, complete the information needed to
create a working Truss optimization program.

2.3.3 Parallelization Strategies. There is enough work
in Truss to keep even a petascale computer quite busy
for hours, because the set of possible truss topologies
grows very rapidly with the number of joints.

 8

Figure 4. Parallel Topology Optimization

The outermost level of parallelization is the topology
generation. Even a small number of joints generates bil-
lions of designs to test. The next level is the optimization
of any given topology, each of which can be spread over
a large set of process threads. The innermost level of
parallelism is that of solving the sparse and relatively
small set of linear equations. This solving is iterative
because once the thickness of each truss or cable is de-
termined from the applied forces, the resulting weights
must be used to recompute the load until the solution
converges. Interval arithmetic can be used to exclude
certain topologies or joint positions, and this exclusion
needs to be communicated to all processors so that fu-
ture searching can be “pruned” [Hansen and Walster,
2004]. Load balancing and constant global communica-
tion create a representative challenge for large-scale sci-
entific computers.

Figure 5 shows a truss that was optimized by an early
form of this PBB. The blue lines represent struts (com-
pressive load), and the red lines represent cables.

Figure 5. Optimized Truss Structure

The weight reduction possible by adding complexity
is dramatic, lest anyone think that all this computing is
unnecessary. Figure 6 shows the drop in weight of the
truss as joints are added, using a topology similar to that
shown in Figure 5.

4 5 6 7 8
0
1
2
3
4
5
6
7

Total Weight
Weight per Joint

Number of Joints

W
ei

gh
t,

M
et

ri
c

To
ns

Figure 6. Weight Reduction with Complexity

2.3.4 Acceptability Functions. The most important Ai
are the ones that show Acceptability as a function of the
reduction in weight, the accuracy of the answer, the time
to perform the run, and the cost of the computer run.
Many others could be included, but let’s start with these.

The initial guess is to connect single beams and ca-
bles from the attachment points to the load point. This is
the heaviest solution and easy to compute, so it defines
the starting value. If we are unable to reduce the weight,
the Acceptability is zero. If we could by some incredibly
ingenious method reduce the weight to nothing (a sort of
gossamer structure), then Acceptability would be one.
The purpose that defines this purpose-based benchmark
thus becomes one of the Acceptability functions. Ac-
ceptability = (Reduction of weight) divided by (Initial
weight). This is a simple linear function of the weight w
and the unoptimized weight w0:

Aw = (w0– w)/w0:

 9

0
0 0.2 0.4 0.6 0.8 1.0

Aw =

Reduction in weight

Ac
ce

pt
ab

ili
ty

w Šw0
w0

1

Benchmark
Purpose

Figure 7. Truss Benchmark Purpose
Acceptability Function

We can estimate the Acceptability function for the
accuracy of the answer. This function and the ones that
follow are purely for purposes of illustration, and the
function is an invented one that “looks right”; it must be
replaced by one based on actual studies of user require-
ments. For now, it serves as a number the computer can
calculate at the end of a benchmark run, using higher-
quality (and slower) arithmetic than was used during the
run:

1

0
0 1 2 3 4 5 6 7 8 9

Ac
ce

pt
ab

ili
ty

Accurate decimals in result

a5

a5 + 1000
Aa =

Figure 8. Accuracy Acceptability

The time to perform the run captures the patience
typical of practitioners in this application area, which is
often dictated by the time required for the entire task.
The actual construction of a truss might require a few
days to a few weeks, for example, so few engineers
would care about the difference between an instantane-
ous answer and one that required, say, 15 minutes of
computation. It is typical for structural analysis pro-
grams to be adjusted in complexity to the point where a
job started at the end of the business day is finished by
the beginning of the next business day… about 15 hours.
A run of less than 7 hours might be well accepted (since
it allows two runs per business day), but acceptance
might drop to less than 0.5 if a run takes an entire day.

The following curve was constructed to fit these esti-
mates.

1

0
0 1 2 3

1
t3 + 1

At =

Total time to solution (days)

Ac
ce

pt
ab

ili
ty

Figure 9. Acceptability of Solution Time

The cost of the run similarly yields a decreasing Ac-
ceptability function. At first, the cost would appear to be
tied simply to the cost of the steel that is saved, which is
probably only a few thousand dollars. However, a char-
acteristic of the structural analysis segment is that the
computation insures against a design failure that could
cost lives or result in catastrophic destruction of prop-
erty. No one would consider insuring a truss structure
that had been designed without a quantitative analysis
regarding its strength and safety, because failure could
cost millions of dollars in lawsuits. The reasoning is
similar to that used by actuaries to determine the cost of
liability insurance.

It is conceivable that some small fraction of designers
would be willing to spend over $50,000 to certify that a
structure meets all safety requirements while optimizing
some aspect of the design. At the other extreme, it may
be petty to reduce the cost of the computer run below,
say, 0.1% of the cost of actually building the structure.
Here is an example of a possible Cost acceptability func-
tion:

 10

0

108

c2 + 108
Ac =

Total cost of solution ($)

Ac
ce

pt
ab

ili
ty

0 20k 40k 60k 80k

1

Fig. 10. Acceptability of Cost

There are other Acceptability functions that could be
put into the Net Acceptability product, such as reliability
(fraction of runs that complete successfully), but we stop
with these four for now: A = AwAaAtAc.

This is a radical departure from the typical way that
cost and time are incorporated into benchmark reporting.
Many productivity measures use ratios to cost or ratios
to time. This approach makes more sense for traditional
business computing, where cost and time are accurately
regarded as linearly disadvantageous. Taking twice as
long or costing twice as much is clearly half as produc-
tive for a given amount of output. This is much less the
case for high-end, technical computing.

2.3.5 Result Reporting and Verification. The Truss
benchmark produces an output that would be sufficient
for an engineer to create the structure: the list of joints,
their position in space, the members that connect to
them, whether the members are cables or struts, and the
length and cross-section of each member. Since the input
requirements have a random component to prevent
“cheating” on the benchmark, it is not immediately ob-
vious how to verify that the output is valid.

In addition to the output information listed above, the
benchmark requires that a list of forces impinging on
each joint be printed, and the sum of those forces. This
makes clear whether the linear system was actually
solved, since the total force on every joint should be
zero. The list of forces is not so large that a human can-
not scan it for validity, and of course, the computer can
easily compute the maximum deviation from zero of the
list of net joint forces as a single-value test of validity.
We envision that the numerical verification of the an-
swer will use containment set methods that go well be-
yond the arithmetic used to obtain the answer, and will
be considered part of the execution. These tests are in
development at present.

2.4 OBJECTIONS TO THE PBB
APPROACH

The PBB approach was first presented to audiences in
late 2002. Some of the common reactions and responses
follow.

You shouldn’t reduce performance to a single num-
ber. It’s clearly a multidimensional quantity.

Yes, but if you don’t define a way to reduce it to a
single number, someone else will. Their summation
probably will not be the one you envisioned. There-
fore, I strongly recommend that any benchmark pre-
sent the multidimensional data and try to specify the
single figure of merit that best correlates with the
way users would coalesce all those values. Ulti-
mately, people will reduce any collection of aspects
to a single number that determines whether they are
willing to pay the price for the system. The Accept-
ability Functions communicate what the assumed
importance is of each aspect of the system, but any-
one can take the component measures and apply
their own set of Acceptability Functions to the same
metrics. See [Smith 1988] for an in-depth discussion
of the single-number reporting issue.

Since the PBB rules are so loose, doesn’t that make
it easy to cheat?

On the contrary, it makes cheating impossible by de-
fining it away. Cheating is possible only when there
is a difference between user goals and what is actu-
ally measured. In the ten years that HINT has been
available, not a single method of cheating has been
found; this is for the reason stated. Imagine that
someone finds a way to “cheat” by predicting the
weather more accurately with less effort. How could
that possibly be considered cheating? If some dis-
crepancy is found between the user goals and what
the PBB measures, then the PBB is simply redefined
to eliminate the discrepancy.

You have to be a real domain expert to use one of
these things.

Not if we do our job right. While we need a domain
expert to construct the benchmark (and supply Ac-
ceptability criteria), understanding a PBB descrip-
tion shouldn’t require a specialized degree in me-
chanical engineering or finance or meteorology to
understand. Both the purpose and the explanation of
how to solve the problem should be accessible to the
educated public. The Truss benchmark, for example,
requires only high school physics to program once
we provide the rules for the strength of the cables
and struts. Most of these problems require a one-

 11

page lesson in the specific math and physics they re-
quire, but if they require more than that, we probably
have an unusable PBB and should redesign it.

Doesn’t this just measure the cleverness of the pro-
grammers instead of the system? What will happen if
someone comes up with a very clever way to solve
the problem?

Whatever clever method is used, it must be shared
with everyone as part of the reporting of the bench-
mark. Others can then choose to use the technique or
not. Furthermore, since PBBs can (and should) take
into account the development cost, the use of clever
programmers or extensive tuning effort will show up
as reduced Acceptability in the development cost as-
pect.

I don’t see how to make my workload purpose-based.

The PBB approach doesn’t work universally; at least
it doesn’t yet. An example of a workload that is dif-
ficult to make purpose-based is: “Run a simulation
showing two galaxies colliding.” Checking the simu-
lations against actual experiment could take a long
time indeed. There is no attempt to establish the ac-
curacy of the answer, since the value of the compu-
tation is the qualitative insight it provides into an as-
trophysical phenomenon. While we acknowledge the
importance of programs for which the output is
judged in a non-numerical way, we do not currently
have a benchmark approach that encompasses them.

Why multiply the Acceptability Functions together?
Wouldn’t a weighted sum be better?

A weighted sum makes sense for many “productiv-
ity” definitions, such as each stage in a software life
cycle, but “acceptability” has different implications
as an English word. The reason for using products is
that one unacceptable parameter means the entire
system is unacceptable. That’s easier to do with
products than with weighted sums. Imagine a sys-
tem that is affordable, fast, and easy to program, but
has just one problem: It never gets the right answer.
Should that failure be thrown into a weighted sum
as just one more thing to consider, or should it be
given multiplicative “veto power” over the single-
number rating? There may be aspect pairs that rep-
resent tradeoffs, where poorness in one aspect is
compensated by excellence in another, and then a
weighted sum would be the right model. The Ac-
ceptability Product is similar to what one sees in
formal procurements for computer systems. The
Acceptability of the system is the logical AND of
all the requirements being met, and not expressed as
tradeoffs.

I have a computer program that solves a very inter-
esting problem; can we make it into a Purpose-
Based Benchmark?

Many people have presented the author with pro-
grams from their area of interest and suggested that
they be used to define a PBB. The usual obstacle is
that there is no quantitative definition of how well
the program achieves its purpose, and the person
has no idea how to compare two completely differ-
ent methods of solving the problem that take the
same amount of time but get different answers.
Once that’s done, the rest of the task of converting it
to a PBB is straightforward.

 What you’re proposing is too difficult.

If what you want to measure is Productivity, it’s dif-
ficult to see how it can be made simpler.

2.5 FUTURE WORK

One lesson from history is that benchmark definitions
are difficult to change once they are widely dissemi-
nated. Hence, we are doing very careful internal testing
of the PBBs before including them as part of a published
paper. We are testing the Truss PBB with college pro-
gramming classes right now. We will create versions in
various languages and with various parallelization para-
digms (message passing, global address space, OpenMP)
to use as starting points for those who wish to test just
the execution characteristics of a system. Once these
have had sufficient testing, we will disseminate them
through the Internet and traditional computing journals.
While the temptation was great to include an early ver-
sion of a code definition of Truss in an Appendix, this
would almost certainly result in that becoming the com-
munity definition of the benchmark prematurely.

A second PBB that involves radiation transport is
nearly complete in its English and mathematical defini-
tion. An I/O-intensive PBB based on satellite image col-
lection, comparison, and archiving is under review by
experts. A weather/climate PBB consists almost entirely
of defining the quality of a prediction, and we expect to
use existing public-domain weather models as reference
implementations instead of attempting to develop our
own. We are well along in the creation of a biological
PBB based on the purpose of using computers to find the
shapes and properties of proteins.

For each PBB, we are finding domain experts to re-
view the benchmarks and verify that the workloads are
representative and give initial feedback on the Accept-
ability Functions. Eventually, the Acceptability Func-
tions should be determined by statistical survey of users

 12

in particular application areas, and updated periodically.
A third-party institution such as IDC might be ideal for
this task.

SUMMARY

The Purpose-Based Benchmark approach represents the
latest in an evolving series of improvements to the way
computer systems are evaluated. The key is the expres-
sion of an explicit purpose for a computation, and a way
to measure progress toward that goal as a scalar value.
They are particularly well suited to technical computing
because they solve the long-standing problem of com-
paring computers that give “different answers” because
of floating-point arithmetic variation. Furthermore, the
Acceptability Function approach provides a way to ex-
press the nonlinearity of user requirements for aspects of
the computation, including the Purpose.

ACKNOWLEDGMENTS

This work would not have occurred without the impetus
of DARPA’s High-Productivity Computing Systems
program. By identifying the need for quantitative meas-
ures of “productivity,” DARPA has advanced the state
of high-end computing in new and far-reaching ways.
The author also wishes to thank John Busch, manager of
the Architecture Exploration group at Sun Labs, for te-
naciously driving and supporting approaches to com-
puter metrics that enable breakaway system design.

AUTHOR BIOGRAPHY

John Gustafson received his B.S. degree from Caltech,
and his M.S. and Ph.D. degrees from Iowa State Univer-
sity, all in Applied Mathematics. He was a software en-
gineer at the Jet Propulsion Laboratory in Pasadena, a
senior staff scientist and product development manager
at Floating Point Systems, and a member of the technical
staff at Sandia National Laboratories in Albuquerque,
NM. He founded the Scalable Computing Laboratory
within Ames Laboratory, USDOE, and led computa-
tional science research efforts there for 10 years. He
joined Sun Microsystems in 2000; he is currently the
application architect for Sun’s HPCS work. His research
areas are High performance computing, Performance
Analysis, Parallel architectures, Numerical analysis, Al-
gorithms, and Computer graphics.

REFERENCES

Bailey, D., Barton, J., 1991. The NAS Parallel Bench-
marks. Report RNR-91-002, NASA/Ames Research
Center.

Dongarra, J., updated periodically. Performance of vari-
ous computers using standard linear equations
software in a Fortran environment. Oak Ridge Na-
tional Laboratory.

Faulk, S., Gustafson, J, Johnson, P., Porter, A., Tichy,
W., and Votta, L., 2004. Measuring HPC productiv-
ity. (This issue.)

Gustafson, J., Rover, D., Elbert, S., and Carter, M.,
1990. The design of a scalable, fixed-time computer
benchmark. Journal of Parallel and Distributed
Computing, 12(4): 388–401.

Gustafson, J., 1994. A paradigm for grand challenge per-
formance evaluation,” 1994. Proceedings of the
Toward Teraflop Computing and New Grand Chal-
lenge Applications Mardi Gras ’94 Conference, Ba-
ton Rouge, Louisiana.
(http://www.scl.ameslab.gov/Publications/pubs_j
ohn.html)

Gustafson, J. & Snell, Q., 1995. HINT: A new way to
measure computer performance. Proceedings of the
28th Annual Hawaii International Conference on
System Sciences, Vol. II: 392–401.

Hansen, E. & Walster, G. W., 2004. Global Optimiza-
tion using Interval Analysis, 2nd edition, Marcel
Dekker, Inc., New York,

“IBM RT PC Computer Technology, 1986. IBM Form
No. SA23-1057: 81.

Kahan, W., 1997. The baleful effect of computer
benchmarks upon applied mathematics, physics and
chemistry. The John von Neumann Lecture at the
45th Annual Meeting of SIAM, Stanford University.

Luce, R. & Raiffa, H., 1957. Games and Decisions: In-
troduction and Critical Survey,” John Wiley &
Sons, Inc., New York.

McCalpin, J., updated periodically. “STREAM: Sustain-
able Memory Bandwidth in High Performance
Computers,” (http://www.cs.virginia.edu/stream/)

Mullen, R., and Muhanna, R., 1999. Bounds of structural
response for all possible loading combinations.
Journal of Structural Engineering. 125(1): 98–106.

Pointer, L., 1990. PERFECT: Performance Evaluation
for Cost-Effective Transformations. CSRD Report
No. 964.

 13

Smith, J. E., 1988. Characterizing performance with a
single number. Communications of the ACM,
31(10): 1202–1206.

Snelling, D., 1993. A philosophical perspective on per-
formance measurement. Computer Benchmarks,
Dongarra and Gentzsch, eds., North-Holland, Am-
sterdam: 97–103.

SPEC (Standard Performance Evaluation Corporation), up-
dated periodically. (http://www.specbench.org/).

Weingarten, F., 1993. HPCC research questioned. Com-
munications of the ACM, 36(11): 27–29.

 14

	Summary

